Adaptive resonance theory in social media data clustering : roles, methodologies, and applications /

Saved in:
Bibliographic Details
Author / Creator:Meng, Lei, author.
Imprint:Cham, Switzerland : Springer Nature, [2019]
©2019
Description:1 online resource
Language:English
Series:Advanced information and knowledge processing
Advanced information and knowledge processing.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11873836
Hidden Bibliographic Details
Other authors / contributors:Tan, Ah-Hwee, author.
Wunsch, Donald C., author.
ISBN:9783030029852
3030029859
9783030029845
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (EBSCO, viewed May 7, 2019).
Summary:Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:Basic knowledge (data & challenges) on social media analyticsClustering as a fundamental technique for unsupervised knowledge discovery and data miningA class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domainAdaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction. It presents initiatives on the mathematical demonstration of ART's learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks. Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:How to process big streams of multimedia data?How to analyze social networks with heterogeneous data?How to understand a user's interests by learning from online posts and behaviors?How to create a personalized search engine by automatically indexing and searching multimodal information resources?

MARC

LEADER 00000cam a2200000Ii 4500
001 11873836
006 m o d
007 cr cnu|||unuuu
008 190502s2019 sz ob 001 0 eng d
005 20240513212559.8
015 |a GBB987495  |2 bnb 
016 7 |a 019390152  |2 Uk 
020 |a 9783030029852  |q (electronic bk.) 
020 |a 3030029859  |q (electronic bk.) 
020 |z 9783030029845 
035 |a (OCoLC)1099674890 
035 9 |a (OCLCCM-CC)1099674890 
037 |a com.springer.onix.9783030029852  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d UKMGB  |d OCLCF  |d UKAHL  |d OCLCQ 
049 |a MAIN 
050 4 |a QA76.9.B45 
072 7 |a COM  |x 018000  |2 bisacsh 
100 1 |a Meng, Lei,  |e author. 
245 1 0 |a Adaptive resonance theory in social media data clustering :  |b roles, methodologies, and applications /  |c Lei Meng, Ah-Hwee Tan and Donald C. Wunsch II. 
264 1 |a Cham, Switzerland :  |b Springer Nature,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced information and knowledge processing 
504 |a Includes bibliographical references and index. 
520 |a Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:Basic knowledge (data & challenges) on social media analyticsClustering as a fundamental technique for unsupervised knowledge discovery and data miningA class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domainAdaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction. It presents initiatives on the mathematical demonstration of ART's learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks. Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:How to process big streams of multimedia data?How to analyze social networks with heterogeneous data?How to understand a user's interests by learning from online posts and behaviors?How to create a personalized search engine by automatically indexing and searching multimodal information resources? 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed May 7, 2019). 
505 0 |a Intro; Preface; Scope; Content; Audience; Acknowledgments; Contents; Theories; 1 Introduction; 1.1 Clustering in the Era of Web 2.0; 1.2 Research Issues and Challenges; 1.2.1 Representation of Social Media Data; 1.2.2 Scalability for Big Data; 1.2.3 Robustness to Noisy Features; 1.2.4 Heterogeneous Information Fusion; 1.2.5 Sensitivity to Input Parameters; 1.2.6 Online Learning Capability; 1.2.7 Incorporation of User Preferences; 1.3 Approach and Methodology; 1.4 Outline of the Book; References; 2 Clustering and Its Extensions in the Social Media Domain; 2.1 Clustering 
505 8 |a 2.1.1 K-Means Clustering2.1.2 Hierarchical Clustering; 2.1.3 Graph Theoretic Clustering; 2.1.4 Latent Semantic Analysis; 2.1.5 Non-Negative Matrix Factorization; 2.1.6 Probabilistic Clustering; 2.1.7 Genetic Clustering; 2.1.8 Density-Based Clustering; 2.1.9 Affinity Propagation; 2.1.10 Clustering by Finding Density Peaks; 2.1.11 Adaptive Resonance Theory; 2.2 Semi-Supervised Clustering; 2.2.1 Group Label Constraint; 2.2.2 Pairwise Label Constraint; 2.3 Heterogeneous Data Co-Clustering; 2.3.1 Graph Theoretic Models; 2.3.2 Non-Negative Matrix Factorization Models 
505 8 |a 2.3.3 Markov Random Field Model2.3.4 Multi-view Clustering Models; 2.3.5 Aggregation-Based Models; 2.3.6 Fusion Adaptive Resonance Theory; 2.4 Online Clustering; 2.4.1 Incremental Learning Strategies; 2.4.2 Online Learning Strategies; 2.5 Automated Data Cluster Recognition; 2.5.1 Cluster Tendency Analysis; 2.5.2 Posterior Cluster Validation Approach; 2.5.3 Algorithms Without a Pre-defined Number of Clusters; 2.6 Social Media Mining and Related Clustering Techniques; 2.6.1 Web Image Organization; 2.6.2 Multimodal Social Information Fusion; 2.6.3 User Community Detection in Social Networks 
505 8 |a 2.6.4 User Sentiment Analysis2.6.5 Event Detection in Social Networks; 2.6.6 Community Question Answering; 2.6.7 Social Media Data Indexing and Retrieval; 2.6.8 Multifaceted Recommendation in Social Networks; References; 3 Adaptive Resonance Theory (ART) for Social Media Analytics; 3.1 Fuzzy ART; 3.1.1 Clustering Algorithm of Fuzzy ART; 3.1.2 Algorithm Analysis; 3.2 Geometric Interpretation of Fuzzy ART; 3.2.1 Complement Coding in Fuzzy ART; 3.2.2 Vigilance Region (VR); 3.2.3 Modeling Clustering Dynamics of Fuzzy ART Using VRs; 3.2.4 Discussion 
505 8 |a 3.3 Vigilance Adaptation ARTs (VA-ARTs) for Automated Parameter Adaptation3.3.1 Activation Maximization Rule; 3.3.2 Confliction Minimization Rule; 3.3.3 Hybrid Integration of AMR and CMR; 3.3.4 Time Complexity Analysis; 3.3.5 Experiments; 3.4 User Preference Incorporation in Fuzzy ART; 3.4.1 General Architecture; 3.4.2 Geometric Interpretation; 3.5 Probabilistic ART for Short Text Clustering; 3.5.1 Procedures of Probabilistic ART; 3.5.2 Probabilistic Learning for Prototype Modeling; 3.6 Generalized Heterogeneous Fusion ART (GHF-ART) for Heterogeneous Data Co-Clustering 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 0 |a Social media.  |0 http://id.loc.gov/authorities/subjects/sh2006007023 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Social media.  |2 fast  |0 (OCoLC)fst01741098 
655 4 |a Electronic books. 
700 1 |a Tan, Ah-Hwee,  |e author.  |0 http://id.loc.gov/authorities/names/no2006045302 
700 1 |a Wunsch, Donald C.,  |e author.  |0 http://id.loc.gov/authorities/names/nb2003094692 
830 0 |a Advanced information and knowledge processing.  |0 http://id.loc.gov/authorities/names/n2002014314 
903 |a HeVa 
929 |a oclccm 
999 f f |i f2634688-71f2-5360-a797-babc6b9bea43  |s 08728d70-10c0-5098-bb58-50a0fdc16edf 
928 |t Library of Congress classification  |a QA76.9.B45  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-02985-2  |z Springer Nature  |g ebooks  |i 12561704