Automated reasoning for systems biology and medicine /

Saved in:
Bibliographic Details
Imprint:Cham, Switzerland : Springer, [2019]
Description:1 online resource
Language:English
Series:Computational biology ; volume 30
Computational biology ; v. 30.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11912756
Hidden Bibliographic Details
Other authors / contributors:Liò, Pietro, editor.
Zuliani, Paolo, editor.
ISBN:9783030172978
303017297X
9783030172985
3030172988
9783030172992
3030172996
9783030172961
3030172961
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from digital title page (viewed on July 18, 2019).
Summary:"This book presents outstanding contributions in an exciting, new and multidisciplinary research area: the application of formal, automated reasoning techniques to analyse complex models in systems biology and systems medicine. Automated reasoning is a field of computer science devoted to the development of algorithms that yield trustworthy answers, providing a basis of sound logical reasoning. For example, in the semiconductor industry formal verification is instrumental to ensuring that chip designs are free of defects (or "bugs"). Over the past 15 years, systems biology and systems medicine have been introduced in an attempt to understand the enormous complexity of life from a computational point of view. This has generated a wealth of new knowledge in the form of computational models, whose staggering complexity makes manual analysis methods infeasible. Sound, trusted, and automated means of analysing the models are thus required in order to be able to trust their conclusions. Above all, this is crucial to engineering safe biomedical devices and to reducing our reliance on wet-lab experiments and clinical trials, which will in turn produce lower economic and societal costs. Some examples of the questions addressed here include: Can we automatically adjust medications for patients with multiple chronic conditions? Can we verify that an artificial pancreas system delivers insulin in a way that ensures Type 1 diabetic patients never suffer from hyperglycaemia or hypoglycaemia? And lastly, can we predict what kind of mutations a cancer cell is likely to undergo? This book brings together leading researchers from a number of highly interdisciplinary areas, including: · Parameter inference from time series · Model selection · Network structure identification · Machine learning · Systems medicine · Hypothesis generation from experimental data · Systems biology, systems medicine, and digital pathology · Verification of biomedical devices"--Publisher's website.
Other form:Printed edition: 9783030172961
Printed edition: 9783030172985
Printed edition: 9783030172992
Standard no.:10.1007/978-3-030-17297-8

MARC

LEADER 00000cam a2200000Ii 4500
001 11912756
005 20210625185303.7
006 m o d
007 cr cnu---unuuu
008 190615s2019 sz a ob 001 0 eng d
015 |a GBB9C6130  |2 bnb 
016 7 |a 019437565  |2 Uk 
019 |a 1104902112  |a 1110844288  |a 1115073009  |a 1122815715  |a 1126206962  |a 1156363601  |a 1162775564 
020 |a 9783030172978  |q (electronic book) 
020 |a 303017297X  |q (electronic book) 
020 |a 9783030172985  |q (print) 
020 |a 3030172988 
020 |a 9783030172992  |q (print) 
020 |a 3030172996 
020 |z 9783030172961 
020 |z 3030172961 
024 7 |a 10.1007/978-3-030-17297-8  |2 doi 
035 |a (OCoLC)1104726822  |z (OCoLC)1104902112  |z (OCoLC)1110844288  |z (OCoLC)1115073009  |z (OCoLC)1122815715  |z (OCoLC)1126206962  |z (OCoLC)1156363601  |z (OCoLC)1162775564 
035 9 |a (OCLCCM-CC)1104726822 
037 |a com.springer.onix.9783030172978  |b Springer Nature 
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d YDX  |d Z5A  |d EBLCP  |d GW5XE  |d YDXIT  |d UKMGB  |d OCLCF  |d DCT  |d VT2  |d UPM  |d LEATE  |d OCLCQ  |d UKAHL  |d NLW  |d OCLCO 
049 |a MAIN 
050 4 |a QH324.2  |b .A98 2019 
072 7 |a PSA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PSA  |2 thema 
072 7 |a UB  |2 thema 
245 0 0 |a Automated reasoning for systems biology and medicine /  |c Pietro Liò, Paolo Zuliani, editors. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2019] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational biology ;  |v volume 30 
504 |a Includes bibliographical references and index. 
505 0 0 |t Model Checking --  |t Model Checking Approach to the Analysis of Biological Systems /  |r Nikola Beneš, Luboš Brim, Samuel Pastva, David Šafránek --  |t Automated Reasoning for the Synthesis and Analysis of Biological Programs /  |r Sara-Jane Dunn, Boyan Yordanov --  |t Statistical Model Checking-Based Analysis of Biological Networks /  |r Bing Liu, Benjamin M. Gyori, P.S. Thiagarajan --  |t Models, Devices, Properties, and Verification of Artificial Pancreas Systems /  |r Taisa Kushner, B. Wayne Bequette, Faye Cameron, Gregory Forlenza, David Maahs, Sriram Sankaranarayanan --  |t Using State Space Exploration to Determine How Gene Regulatory Networks Constrain Mutation Order in Cancer Evolution /  |r Matthew A. Clarke, Steven Woodhouse, Nir Piterman, Benjamin A. Hall, Jasmin Fisher --  |t Formal Methods and Logic --  |t Set-Based Analysis for Biological Modeling /  |r Thao Dang, Tommaso Dreossi, Eric Fanchon, Oded Maler, Carla Piazza, Alexandre Rocca --  |t Logic and Linear Programs to Understand Cancer Response /  |r Misbah Razzaq, Lokmane Chebouba, Pierre Le Jeune, Hanen Mhamdi, Carito Guziolowski, Jérémie Bourdon --  |t Logic-Based Formalization of System Requirements for Integrated Clinical Environments /  |r Cinzia Bernardeschi, Andrea Domenici, Paolo Masci --  |t Balancing Prescriptions with Constraint Solvers /  |r Juliana K.F. Bowles, Marco B. Caminati --  |t Metastable Regimes and Tipping Points of Biochemical Networks with Potential Applications in Precision Medicine /  |r Satya Swarup Samal, Jeyashree Krishnan, Ali Hadizadeh Esfahani, Christoph Lüders, Andreas Weber, Ovidiu Radulescu --  |t Stochastic Modelling and Analysis --  |t Stochastic Spatial Modelling of the Remyelination Process in Multiple Sclerosis Lesions /  |r Ludovica Luisa Vissat, Jane Hillston, Anna Williams --  |t Approximation Techniques for Stochastic Analysis of Biological Systems /  |r Thakur Neupane, Zhen Zhang, Curtis Madsen, Hao Zheng, Chris J. Myers --  |t A Graphical Approach for Hybrid Modelling of Intracellular Calcium Dynamics Based on Coloured Hybrid Petri Nets /  |r Amr Ismail, Mostafa Herajy, Monika Heiner --  |t Methods for Personalised Delivery Rate Computation for IV Administered Anesthetic Propofol /  |r Alena Simalatsar, Monia Guidi, Pierre Roduit, Thierry Buclin --  |t Machine Learning and Artificial Intelligence --  |t Towards the Integration of Metabolic Network Modelling and Machine Learning for the Routine Analysis of High-Throughput Patient Data /  |r Maria Pires Pacheco, Tamara Bintener, Thomas Sauter --  |t Opportunities and Challenges in Applying Artificial Intelligence to Bioengineering /  |r Fusun Yaman, Aaron Adler, Jacob Beal --  |t Deep Learning with Convolutional Neural Networks for Histopathology Image Analysis /  |r Dragan Bošnački, Natal van Riel, Mitko Veta. 
520 |a "This book presents outstanding contributions in an exciting, new and multidisciplinary research area: the application of formal, automated reasoning techniques to analyse complex models in systems biology and systems medicine. Automated reasoning is a field of computer science devoted to the development of algorithms that yield trustworthy answers, providing a basis of sound logical reasoning. For example, in the semiconductor industry formal verification is instrumental to ensuring that chip designs are free of defects (or "bugs"). Over the past 15 years, systems biology and systems medicine have been introduced in an attempt to understand the enormous complexity of life from a computational point of view. This has generated a wealth of new knowledge in the form of computational models, whose staggering complexity makes manual analysis methods infeasible. Sound, trusted, and automated means of analysing the models are thus required in order to be able to trust their conclusions. Above all, this is crucial to engineering safe biomedical devices and to reducing our reliance on wet-lab experiments and clinical trials, which will in turn produce lower economic and societal costs. Some examples of the questions addressed here include: Can we automatically adjust medications for patients with multiple chronic conditions? Can we verify that an artificial pancreas system delivers insulin in a way that ensures Type 1 diabetic patients never suffer from hyperglycaemia or hypoglycaemia? And lastly, can we predict what kind of mutations a cancer cell is likely to undergo? This book brings together leading researchers from a number of highly interdisciplinary areas, including: · Parameter inference from time series · Model selection · Network structure identification · Machine learning · Systems medicine · Hypothesis generation from experimental data · Systems biology, systems medicine, and digital pathology · Verification of biomedical devices"--Publisher's website. 
588 0 |a Online resource; title from digital title page (viewed on July 18, 2019). 
650 0 |a Computational biology.  |0 http://id.loc.gov/authorities/subjects/sh2003008355 
650 0 |a Systems biology.  |0 http://id.loc.gov/authorities/subjects/sh2008002926 
650 0 |a Medical informatics.  |0 http://id.loc.gov/authorities/subjects/sh89005069 
650 7 |a Computational biology.  |2 fast  |0 (OCoLC)fst00871990 
650 7 |a Medical informatics.  |2 fast  |0 (OCoLC)fst01014175 
650 7 |a Systems biology.  |2 fast  |0 (OCoLC)fst01745552 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Liò, Pietro,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2009000823 
700 1 |a Zuliani, Paolo,  |e editor. 
776 0 8 |i Printed edition:  |z 9783030172961 
776 0 8 |i Printed edition:  |z 9783030172985 
776 0 8 |i Printed edition:  |z 9783030172992 
830 0 |a Computational biology ;  |v v. 30.  |x 1568-2684  |0 http://id.loc.gov/authorities/names/no00094896 
903 |a HeVa 
929 |a oclccm 
999 f f |i d189ce0c-fae7-5778-b5db-2fde00900faa  |s da2d4a0d-d37b-5ffd-879d-51c862c7f6bd 
928 |t Library of Congress classification  |a QH324.2 .A98 2019  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-17297-8  |z Springer Nature  |g ebooks  |i 12561508