Python for Probability, Statistics, and Machine Learning /

Saved in:
Bibliographic Details
Author / Creator:Unpingco, Josâe.
Edition:2nd ed. 2019.
Imprint:Cham : Springer International Publishing, 2019.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11930940
Hidden Bibliographic Details
ISBN:9783030185459
3030185451
9783030185442
3030185443
9783030185466
303018546X
9783030185473
3030185478
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Summary:This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
Other form:Printed edition: 9783030185442
Printed edition: 9783030185466
Printed edition: 9783030185473
Standard no.:10.1007/978-3-030-18545-9
10.1007/978-3-030-18

MARC

LEADER 00000cam a2200000Mi 4500
001 11930940
005 20210625184927.4
006 m o d
007 cr |n|||||||||
008 190629s2019 gw o 000 0 eng d
015 |a GBB9C8723  |2 bnb 
016 7 |a 019459202  |2 Uk 
019 |a 1107874864  |a 1110237952  |a 1110740798  |a 1110991970  |a 1111346243  |a 1122913059  |a 1204011382  |a 1239952892  |a 1244636761 
020 |a 9783030185459 
020 |a 3030185451 
020 |a 9783030185442  |q (print) 
020 |a 3030185443 
020 |a 9783030185466  |q (print) 
020 |a 303018546X 
020 |a 9783030185473  |q (print) 
020 |a 3030185478 
024 7 |a 10.1007/978-3-030-18545-9  |2 doi 
024 8 |a 10.1007/978-3-030-18 
035 |a (OCoLC)1112397802  |z (OCoLC)1107874864  |z (OCoLC)1110237952  |z (OCoLC)1110740798  |z (OCoLC)1110991970  |z (OCoLC)1111346243  |z (OCoLC)1122913059  |z (OCoLC)1204011382  |z (OCoLC)1239952892  |z (OCoLC)1244636761 
035 9 |a (OCLCCM-CC)1112397802 
037 |b Springer 
040 |a UX1  |b eng  |e pn  |c UX1  |d OCLCO  |d OCLCF  |d ESU  |d OCLCQ  |d UKAHL  |d DCT  |d YDX  |d YDXIT  |d LQU  |d GW5XE  |d UKMGB  |d MYG  |d EBLCP  |d N$T  |d OCLCO  |d GZM  |d SFB 
049 |a MAIN 
050 4 |a QA76.73.P98  |b U56 2019 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
100 1 |a Unpingco, Josâe. 
245 1 0 |a Python for Probability, Statistics, and Machine Learning /  |c by Josâe Unpingco. 
250 |a 2nd ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Part 1 Getting Started with Scientific Python -- Installation and Setup -- Numpy -- Matplotlib -- Ipython -- Jupyter Notebook -- Scipy -- Pandas -- Sympy -- Interfacing with Compiled Libraries -- Integrated Development Environments -- Quick Guide to Performance and Parallel Programming -- Other Resources -- Part 2 Probability -- Introduction -- Projection Methods -- Conditional Expectation as Projection -- Conditional Expectation and Mean Squared Error -- Worked Examples of Conditional Expectation and Mean Square Error Optimization -- Useful Distributions -- Information Entropy -- Moment Generating Functions -- Monte Carlo Sampling Methods -- Useful Inequalities -- Part 3 Statistics -- Python Modules for Statistics -- Types of Convergence -- Estimation Using Maximum Likelihood -- Hypothesis Testing and P-Values -- Confidence Intervals -- Linear Regression -- Maximum A-Posteriori -- Robust Statistics -- Bootstrapping -- Gauss Markov -- Nonparametric Methods -- Survival Analysis -- Part 4 Machine Learning -- Introduction -- Python Machine Learning Modules -- Theory of Learning -- Decision Trees -- Boosting Trees -- Logistic Regression -- Generalized Linear Models -- Regularization -- Support Vector Machines -- Dimensionality Reduction -- Clustering -- Ensemble Methods -- Deep Learning -- Notation -- References -- Index. 
520 |a This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming. 
504 |a Includes bibliographical references and index. 
650 7 |a Computer science.  |2 fast  |0 (OCoLC)fst00872451 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Engineering mathematics.  |2 fast  |0 (OCoLC)fst00910601 
650 7 |a Statistics.  |2 fast  |0 (OCoLC)fst01132103 
650 7 |a Telecommunication.  |2 fast  |0 (OCoLC)fst01145830 
650 0 |a Python (Computer program language)  |0 http://id.loc.gov/authorities/subjects/sh96008834 
650 0 |a Probabilities  |x Data processing. 
650 0 |a Statistics  |x Data processing.  |0 http://id.loc.gov/authorities/subjects/sh85127583 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
655 4 |a Electronic books. 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030185442 
776 0 8 |i Printed edition:  |z 9783030185466 
776 0 8 |i Printed edition:  |z 9783030185473 
903 |a HeVa 
929 |a oclccm 
999 f f |i 480fab40-338d-59b2-92ee-695fc4c929e8  |s 7567cfb7-1d34-5a94-9789-dc400f5f3816 
928 |t Library of Congress classification  |a QA76.73.P98 U56 2019  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-18545-9  |z Springer Nature  |g ebooks  |i 12563632