Complex analysis and applications /

Saved in:
Bibliographic Details
Author / Creator:Pathak, Hemant Kumar, author.
Imprint:Singapore : Springer, 2019.
Description:1 online resource (xxv, 928 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11938918
Hidden Bibliographic Details
ISBN:9789811397349
9811397341
9811397333
9789811397332
9789811397356
981139735X
9789811397332
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed September 16, 2019).
Summary:This book offers an essential textbook on complex analysis. After introducing the theory of complex analysis, it places special emphasis on the importance of Poincare theorem and Hartog's theorem in the function theory of several complex variables. Further, it lays the groundwork for future study in analysis, linear algebra, numerical analysis, geometry, number theory, physics (including hydrodynamics and thermodynamics), and electrical engineering. To benefit most from the book, students should have some prior knowledge of complex numbers. However, the essential prerequisites are quite minimal, and include basic calculus with some knowledge of partial derivatives, definite integrals, and topics in advanced calculus such as Leibniz's rule for differentiating under the integral sign and to some extent analysis of infinite series. The book offers a valuable asset for undergraduate and graduate students of mathematics and engineering, as well as students with no background in topological properties.
Other form:Printed edition: 9789811397332
Printed edition: 9789811397356
Standard no.:10.1007/978-981-13-9734-9

MARC

LEADER 00000cam a2200000Ii 4500
001 11938918
006 m o d
007 cr cnu|||unuuu
008 190916s2019 si a ob 001 0 eng d
005 20240523193913.6
015 |a GBB9G0392  |2 bnb 
016 7 |a 019517656  |2 Uk 
019 |a 1122593203 
020 |a 9789811397349  |q (electronic bk.) 
020 |a 9811397341  |q (electronic bk.) 
020 |a 9811397333 
020 |a 9789811397332 
020 |a 9789811397356  |q (print) 
020 |a 981139735X 
020 |z 9789811397332  |q (print) 
024 7 |a 10.1007/978-981-13-9734-9  |2 doi 
035 |a (OCoLC)1119665489  |z (OCoLC)1122593203 
035 9 |a (OCLCCM-CC)1119665489 
037 |a com.springer.onix.9789811397349  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d UKMGB  |d YDX  |d OCLCF  |d EBLCP  |d OCLCQ  |d VT2  |d OCLCQ  |d UKAHL 
049 |a MAIN 
050 4 |a QA331 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
100 1 |a Pathak, Hemant Kumar,  |e author. 
245 1 0 |a Complex analysis and applications /  |c Hemant Kumar Pathak. 
264 1 |a Singapore :  |b Springer,  |c 2019. 
300 |a 1 online resource (xxv, 928 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 16, 2019). 
505 0 |a Intro; Preface; Contents; About the Author; Acronyms; Glossary of Symbols; 1 Complex Numbers and Metric Topology of mathbbC; 1.1 Introduction; 1.2 Complex Numbers; 1.2.1 Equality of Complex Numbers; 1.2.2 Fundamental Laws of Addition and Multiplication; 1.2.3 Difference and Division of Two Complex Numbers; 1.3 Modulus and Argument of Complex Numbers; 1.4 Geometrical Representations of Complex Numbers; 1.5 Modulus and Argument of Complex Numbers; 1.5.1 Polar Forms of Complex Numbers; 1.5.2 Conjugates; 1.5.3 Vector Representation of Complex Numbers; 1.5.4 Multiplication of a Complex Number by i 
505 8 |a 1.6 Properties of Moduli1.7 Properties of Arguments; 1.8 Equations of Straight Lines; 1.9 Equations of Circles; 1.9.1 General Equation of a Circle; 1.9.2 Equations of Circles Through Three Points; 1.10 Inverse Points; 1.10.1 Inverse Points with Respect to Lines; 1.10.2 Inverse Points with Respect to Circles; 1.11 Relations Between Inverse Points with Respect To Circles; 1.12 Riemann Spheres and Point at Infinity; 1.12.1 Point at Infinity; 1.12.2 Riemann Spheres; 1.13 Cauchy-Schwarz's Inequality and Lagrange's Identity; 1.14 Metric Spaces and Topology of mathbbC; 1.14.1 Metric Spaces 
505 8 |a 1.14.2 Dense Set1.14.3 Connectedness; 1.14.4 Convergence and Completeness; 1.14.5 Component; 1.14.6 Compactness; 1.14.7 Continuity; 1.14.8 Topological Spaces; 1.14.9 Metrizable Spaces; 1.14.10 Homeomorphism; 2 Analytic Functions, Power Series, and Uniform Convergence; 2.1 Introduction; 2.2 Functions of Complex Variables; 2.2.1 Limits of Functions; 2.2.2 Continuity; 2.3 Uniform Continuity; 2.4 Differentiability; 2.5 Analytic and Regular Functions; 2.6 Cauchy-Riemann Equations; 2.6.1 Conjugate Functions; 2.6.2 Harmonic Functions; 2.6.3 Polar Form of the Cauchy-Riemann Equations 
505 8 |a 2.7 Methods of Constructing Analytic Functions2.7.1 Simple Methods of Constructing Analytic Functions (Without Using Integrals); 2.8 Power Series; 2.8.1 Absolute Convergence of a Power Series; 2.8.2 Some Special Test for Convergence of Series; 2.9 Certain Theorems on Power Series; 2.9.1 Abel's Theorem; 2.9.2 Cauchy-Hadamard's Theorem; 2.9.3 Circle and Radius of Convergence of a Power Series; 2.9.4 Analyticity of the Sum Function of a Power Series; 2.9.5 Abel's Limit Theorem; 2.10 Elementary Functions of a Complex Variable; 2.11 Many-Valued Functions: Branches 
505 8 |a 2.12 The Logarithm and Power Functions2.13 The Riemann Surface for Log z; 2.14 Uniform Convergence of a Sequence; 2.14.1 General Principle of Uniform Convergence of a Sequence; 2.15 Uniform Convergence of a Series; 2.15.1 Principle of Uniform Convergence of a Series; 2.15.2 Sufficient Tests for Uniform Convergence of a Series; 2.15.3 Weierstrass M-Test; 2.16 Hardy's Tests for Uniform Convergence; 2.17 Continuity of the Sum Function of a Series; 3 Complex Integrations; 3.1 Introduction; 3.2 Complex Integrations; 3.2.1 Some Definitions; 3.2.2 Rectifiable Curves; 3.3 Complex Integrals 
520 |a This book offers an essential textbook on complex analysis. After introducing the theory of complex analysis, it places special emphasis on the importance of Poincare theorem and Hartog's theorem in the function theory of several complex variables. Further, it lays the groundwork for future study in analysis, linear algebra, numerical analysis, geometry, number theory, physics (including hydrodynamics and thermodynamics), and electrical engineering. To benefit most from the book, students should have some prior knowledge of complex numbers. However, the essential prerequisites are quite minimal, and include basic calculus with some knowledge of partial derivatives, definite integrals, and topics in advanced calculus such as Leibniz's rule for differentiating under the integral sign and to some extent analysis of infinite series. The book offers a valuable asset for undergraduate and graduate students of mathematics and engineering, as well as students with no background in topological properties. 
650 0 |a Functions of complex variables.  |0 http://id.loc.gov/authorities/subjects/sh85052356 
650 0 |a Mathematical analysis.  |0 http://id.loc.gov/authorities/subjects/sh85082116 
650 7 |a Functions of complex variables.  |2 fast  |0 (OCoLC)fst00936116 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068 
655 4 |a Electronic books. 
776 0 8 |i Printed edition:  |z 9789811397332 
776 0 8 |i Printed edition:  |z 9789811397356 
903 |a HeVa 
929 |a oclccm 
999 f f |i 860f1641-dfa9-5ba9-a430-8e68760bd148  |s 6e027585-aaf0-5140-a726-6b9aac3fe359 
928 |t Library of Congress classification  |a QA331  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-13-9734-9  |z Springer Nature  |g ebooks  |i 12564275