Case-based reasoning research and development : 27th international conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019 : proceedings /

Saved in:
Bibliographic Details
Meeting name:International Conference on Case-Based Reasoning (27th : 2019 : Otzenhausen, Germany)
Imprint:Cham : Springer, [2019]
©2019
Description:1 online resource : illustrations (some color)
Language:English
Series:Lecture notes in computer science. Lecture notes in artificial intelligence ; 11680
LNCS sublibrary. SL 7, Artificial intelligence
Lecture notes in computer science ; 11680.
Lecture notes in computer science. Lecture notes in artificial intelligence.
LNCS sublibrary. SL 7, Artificial intelligence.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11956214
Hidden Bibliographic Details
Other authors / contributors:Bach, Kerstin, editor.
Marling, Cindy, editor.
ISBN:9783030292492
3030292495
9783030292485
3030292487
9783030292485
9783030292508
3030292509
Digital file characteristics:text file PDF
Notes:Includes author index.
Online resource; title from PDF title page (SpringerLink, viewed September 16, 2019).
Summary:This book constitutes the refereed proceedings of the 27th International Conference on Case-Based Reasoning Research and Development, ICCBR 2019, held in Otzenhausen, Germany, in September 2019. The 26 full papers presented in this book were carefully reviewed and selected from 43 submissions. 15 were selected for oral presentation and 11 for poster presentation. The theme of ICCBR 2019, "Explainable AI (XAI)," was highlighted by several activities. These papers, which are included in the proceedings, address many themes related to the theory and application of case-based reasoning and its future direction. --
Other form:Printed edition: 9783030292485
Printed edition: 9783030292508
Standard no.:10.1007/978-3-030-29249-2

MARC

LEADER 00000cam a2200000Ii 4500
001 11956214
006 m o d
007 cr cnu|||unuuu
008 190916s2019 sz a o 101 0 eng d
005 20240618211923.0
015 |a GBB9G0576  |2 bnb 
016 7 |a 019535760  |2 Uk 
019 |a 1125776215  |a 1129368623  |a 1136475111 
020 |a 9783030292492  |q (electronic bk.) 
020 |a 3030292495  |q (electronic bk.) 
020 |z 9783030292485 
020 |a 3030292487 
020 |a 9783030292485 
020 |a 9783030292508  |q (print) 
020 |a 3030292509 
024 7 |a 10.1007/978-3-030-29249-2  |2 doi 
035 |a (OCoLC)1119668062  |z (OCoLC)1125776215  |z (OCoLC)1129368623  |z (OCoLC)1136475111 
035 9 |a (OCLCCM-CC)1119668062 
037 |a com.springer.onix.9783030292492  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d UKMGB  |d OCLCF  |d OCLCO  |d EBLCP  |d OCLCQ  |d DKU  |d SFB  |d OCLCQ  |d VT2 
049 |a MAIN 
050 4 |a Q338.8  |b .I58 2019eb 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
111 2 |a International Conference on Case-Based Reasoning  |n (27th :  |d 2019 :  |c Otzenhausen, Germany)  |0 http://id.loc.gov/authorities/names/nb2019018259 
245 1 0 |a Case-based reasoning research and development :  |b 27th international conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019 : proceedings /  |c Kerstin Bach, Cindy Marling (eds.). 
264 1 |a Cham :  |b Springer,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture notes in computer science. Lecture notes in artificial intelligence ;  |v 11680 
490 1 |a LNCS sublibrary. SL 7, Artificial intelligence 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 16, 2019). 
500 |a Includes author index. 
505 0 |a Intro; Preface; Organization; Abstracts of Invited Papers; Mapping the Challenges and Opportunities of CBR for eXplainable AI; Some Shades of Grey! Interpretability and Explanatory Capacity of Deep Neural Networks; Model-Based Reasoning for Explainable AI as a Service; Contents; Comparing Similarity Learning with Taxonomies and One-Mode Projection in Context of the FEATURE-TAK Framework; 1 Introduction; 2 Weighted One Mode Projection in FEATURE-TAK; 2.1 FEATURE-TAK; 2.2 Integration of the Weighted One-Mode Projection; 3 Evaluation; 3.1 Similarity Matrix Computation and Modelling Assumptions 
505 8 |a 3.2 Evaluation Results4 Discussion and Outlook; References; An Algorithm Independent Case-Based Explanation Approach for Recommender Systems Using Interaction Graphs; 1 Introduction; 2 Related Work; 3 Explanations Based on Interaction Graphs; 3.1 The Case-Based Explanation System; 3.2 Link Prediction Similarity Measures; 4 Evaluation; 4.1 Data; 4.2 Experimental Setup; 4.3 Results; 5 Conclusions and Future Work; References; Explanation of Recommenders Using Formal Concept Analysis; 1 Introduction; 2 Related Work; 3 Formal Concept Analysis; 4 FCA-Based Explanation Algorithm 
505 8 |a 4.1 Explanation of the User Profile4.2 Explaining a Recommendation; 5 Evaluation; 5.1 Global Behaviour of the FCA Lattices; 5.2 Item Selection Strategies; 6 Conclusions and Future Work; References; FLEA-CBR -- A Flexible Alternative to the Classic 4R Cycle of Case-Based Reasoning; 1 Introduction; 2 Related Work; 3 FLEA-CBR; 3.1 Problem Description; 3.2 Overview and Background; 3.3 Core Features; 3.4 Find; 3.5 Learn; 3.6 Explain; 3.7 Adapt; 4 Example Usages; 4.1 CBR and Creativity; 4.2 Library Service Optimization; 5 Conclusion and Future Work; References 
505 8 |a Lazy Learned Screening for Efficient Recruitment1 Introduction; 2 Related Work; 2.1 Existing Approaches to Screening; 2.2 Existing Semantic Resources; 3 Design and Implementation; 3.1 Case Representation; 3.2 Similarity Functions; 3.3 The CBR Cycle; 4 Test and Evaluation; 4.1 Setup; 4.2 Experiment 1; 4.3 Experiment 2; 5 Results and Discussion; 5.1 Experiment 1; 5.2 Experiment 2; 6 Conclusion and Future Work; References; On the Generalization Capabilities of Sharp Minima in Case-Based Reasoning; 1 Introduction; 2 Background and Related Work 
505 8 |a 2.1 Case Base Maintenance and Instance-Based Learning2.2 Sharp and Flat Minima of an Error Function; 3 Case Base Maintenance as Optimization Problem; 3.1 Case Base Editing Problem; 3.2 Introspective Problem-Solving Quality; 3.3 Local Optima in Case Base Editing; 3.4 Hill-Climbing Case Base Editors; 4 Sharpness of a Case Base Configuration; 4.1 Characterizing Flat and Sharp Case Base Editing Optima; 4.2 Discussion of the Sharpness Measure; 5 Empirical Evaluation; 5.1 Correlation Between Sharpness and Generalization; 5.2 Hill-Climber Variants and Their Optima; 6 Conclusion; References 
520 |a This book constitutes the refereed proceedings of the 27th International Conference on Case-Based Reasoning Research and Development, ICCBR 2019, held in Otzenhausen, Germany, in September 2019. The 26 full papers presented in this book were carefully reviewed and selected from 43 submissions. 15 were selected for oral presentation and 11 for poster presentation. The theme of ICCBR 2019, "Explainable AI (XAI)," was highlighted by several activities. These papers, which are included in the proceedings, address many themes related to the theory and application of case-based reasoning and its future direction. --  |c Provided by publisher. 
650 0 |a Case-based reasoning  |v Congresses. 
650 7 |a Case-based reasoning.  |2 fast  |0 (OCoLC)fst00848163 
655 4 |a Electronic books. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft  |0 http://id.loc.gov/authorities/genreForms/gf2014026068 
700 1 |a Bach, Kerstin,  |e editor. 
700 1 |a Marling, Cindy,  |e editor. 
776 0 8 |i Printed edition:  |z 9783030292485 
776 0 8 |i Printed edition:  |z 9783030292508 
830 0 |a Lecture notes in computer science ;  |v 11680.  |0 http://id.loc.gov/authorities/names/n42015162 
830 0 |a Lecture notes in computer science.  |p Lecture notes in artificial intelligence.  |0 http://id.loc.gov/authorities/names/n86736436 
830 0 |a LNCS sublibrary.  |n SL 7,  |p Artificial intelligence.  |0 http://id.loc.gov/authorities/names/n2008077786 
903 |a HeVa 
929 |a oclccm 
999 f f |i c6c8f57b-758a-5b43-a12f-355218aeca12  |s 97cb8232-fc8a-5844-8cf9-c5ebf67bea5b 
928 |t Library of Congress classification  |a Q338.8 .I58 2019eb  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-29249-2  |z Springer Nature  |g ebooks  |i 12564294