Intersection homology & perverse sheaves : with applications to singularities /

Saved in:
Bibliographic Details
Author / Creator:Maxim, Laurenţiu G.
Imprint:Cham : Springer, 2019.
Description:1 online resource
Language:English
Series:Graduate texts in mathematics
Graduate texts in mathematics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11998063
Hidden Bibliographic Details
ISBN:9783030276447
3030276449
9783030276430
3030276430
Summary:This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson-Bernstein-Deligne-Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito's deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology and Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.
Other form:Print version: Maxim, Laurenţiu G. Intersection homology & perverse sheaves. Cham : Springer, 2019 3030276430 9783030276430

MARC

LEADER 00000cam a2200000Ia 4500
001 11998063
005 20210625185446.3
006 m o d
007 cr |n|||||||||
008 191204s2019 sz o 000 0 eng d
015 |a GBC066270  |2 bnb 
016 7 |a 019637735  |2 Uk 
019 |a 1130015453  |a 1130759741 
020 |a 9783030276447  |q (electronic bk.) 
020 |a 3030276449  |q (electronic bk.) 
020 |z 9783030276430 
020 |z 3030276430 
035 |a (OCoLC)1129404775  |z (OCoLC)1130015453  |z (OCoLC)1130759741 
035 9 |a (OCLCCM-CC)1129404775 
037 |a com.springer.onix.9783030276447  |b Springer Nature 
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCF  |d OCLCQ  |d SRU  |d UKAHL  |d UKMGB  |d BWN  |d N$T  |d OCLCO 
049 |a MAIN 
050 4 |a QA612.32 
100 1 |a Maxim, Laurenţiu G. 
245 1 0 |a Intersection homology & perverse sheaves :  |b with applications to singularities /  |c Laurenţiu G. Maxim. 
260 |a Cham :  |b Springer,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Graduate texts in mathematics 
505 0 |a Preface -- 1. Topology of singular spaces: motivation, overview -- 2. Intersection Homology: definition, properties -- 3. L-classes of stratified spaces -- 4. Brief introduction to sheaf theory -- 5. Poincaré-Verdier Duality -- 6. Intersection homology after Deligne -- 7. Constructibility in algebraic geometry -- 8. Perverse sheaves -- 9. The Decomposition Package and Applications -- 10. Hypersurface singularities. Nearby and vanishing cycles -- 11. Overview of Saito's mixed Hodge modules, and immediate applications -- 12. Epilogue -- Bibliography -- Index. 
520 |a This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson-Bernstein-Deligne-Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito's deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology and Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research. 
650 0 |a Intersection homology theory.  |0 http://id.loc.gov/authorities/subjects/sh2002004415 
650 0 |a Sheaf theory.  |0 http://id.loc.gov/authorities/subjects/sh85121203 
650 7 |a Intersection homology theory.  |2 fast  |0 (OCoLC)fst00977500 
650 7 |a Sheaf theory.  |2 fast  |0 (OCoLC)fst01115421 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Maxim, Laurenţiu G.  |t Intersection homology & perverse sheaves.  |d Cham : Springer, 2019  |z 3030276430  |z 9783030276430  |w (OCoLC)1107560201 
830 0 |a Graduate texts in mathematics.  |0 http://id.loc.gov/authorities/names/n83723435 
903 |a HeVa 
929 |a oclccm 
999 f f |i 00413f7a-0b52-5427-9075-01b2f1a2f984  |s 0be056c6-26d2-5f35-b5b1-b7b13d3afbb5 
928 |t Library of Congress classification  |a QA612.32  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-27644-7  |z Springer Nature  |g ebooks  |i 12565813