Apache Spark 2.x machine learning cookbook : over 100 recipes to simplify machine learning model implementations with Spark /

Saved in:
Bibliographic Details
Author / Creator:Amirghodsi, Siamak, author.
Imprint:Birmingham, UK : Packt Publishing, 2017.
Description:1 online resource (1 volume) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12018092
Hidden Bibliographic Details
Varying Form of Title:Apache Spark two point x machine learning cookbook
ISBN:9781782174608
1782174605
9781783551606
Notes:Description based on online resource; title from title page (Safari, viewed October 18, 2017).
Summary:Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intu...

MARC

LEADER 00000cam a2200000Ii 4500
001 12018092
005 20210426223715.6
006 m o d
007 cr unu||||||||
008 171020s2017 enka o 000 0 eng d
015 |a GBB7K2288  |2 bnb 
016 7 |a 018554425  |2 Uk 
020 |a 9781782174608  |q (electronic bk.) 
020 |a 1782174605  |q (electronic bk.) 
020 |z 9781783551606 
035 |a (OCoLC)1006894433 
035 9 |a (OCLCCM-CC)1006894433 
037 |a CL0500000904  |b Safari Books Online 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d OCLCF  |d STF  |d VT2  |d N$T  |d UOK  |d CEF  |d KSU  |d UKMGB  |d WYU  |d C6I  |d UAB  |d K6U  |d QGK 
049 |a MAIN 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
100 1 |a Amirghodsi, Siamak,  |e author. 
245 1 0 |a Apache Spark 2.x machine learning cookbook :  |b over 100 recipes to simplify machine learning model implementations with Spark /  |c Siamak Amirghodsi [and three others]. 
246 3 |a Apache Spark two point x machine learning cookbook 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Description based on online resource; title from title page (Safari, viewed October 18, 2017). 
520 |a Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intu... 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation)  |0 http://id.loc.gov/authorities/names/no2015027445 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast  |0 (OCoLC)fst01938143 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 0 |a Information retrieval.  |0 http://id.loc.gov/authorities/subjects/sh85066148 
650 7 |a COMPUTERS / General  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Information retrieval.  |2 fast  |0 (OCoLC)fst00972619 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 48de6053-09c5-55d8-83e5-392cb71b1325  |s 93510f63-bce6-5d67-b984-115b3d13a463 
928 |t Library of Congress classification  |a Q325.5  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1606542  |z eBooks on EBSCOhost  |g ebooks  |i 12457424