Flexible Bayesian regression modelling /

Saved in:
Bibliographic Details
Imprint:Amsterdam : Academic Press, 2019.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12039638
Hidden Bibliographic Details
Other authors / contributors:Fan, Y. (Yanan), editor.
Nott, David, editor.
Smith, Mike S., editor.
Dortet-Bernadet, Jean-Luc, editor.
ISBN:0128158638
9780128158630
9780128158623 (pbk.)
Notes:1. Bayesian Quantile Regression with the Asymmetric Laplace Distribution 2. A Vignette on Model-Based Quantile Regression: Analyzing Excess-Zero Response 3. Bayesian Nonparametric Density Regression for Ordinal Responses 4. Non-standard Flexible Regression via Variational Bayes 5. Bayesian Mixed Binary-Continuous Copula Regression with an Application to Childhood Undernutrition 6. Bayesian Nonparametric Methods for Financial and Microeconomic Time Series Analysis 7. Bayesian Spectral Analysis Regression 8. Flexible Regression Modelling Under Shape Constraints 9. Scalable Bayesian Variable Selection for aNegative Binomial Regression Models.
Description based on CIP data; resource not viewed.
Summary:Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods. This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine.
Other form:Print version: 9780128158623

MARC

LEADER 00000cam a22000001i 4500
001 12039638
005 20200228115714.8
006 m d
007 cr |||||||||||
008 191011s2019 ne o 000 0 eng d
015 |a GBB9H1888  |2 bnb 
016 7 |a 019576789  |2 Uk 
020 |a 0128158638 
020 |a 9780128158630  |q (electronic bk.) 
020 |z 9780128158623 (pbk.) 
035 |a (OCoLC)1127850237 
035 9 |a (OCLCCM-CC)1127850237 
037 |a 9780128158630  |b Ingram Content Group 
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d YDXIT  |d OCLCF  |d N$T  |d OPELS 
049 |a MAIN 
050 4 |a QA278.2  |b .F54 2019 
245 0 0 |a Flexible Bayesian regression modelling /  |c edited by Yanan Fan, David Nott, Mike S. Smith, Jean-Luc Dortet-Bernadet. 
264 1 |a Amsterdam :  |b Academic Press,  |c 2019. 
300 |a 1 online resource 
336 |a text  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
500 |a 1. Bayesian Quantile Regression with the Asymmetric Laplace Distribution 2. A Vignette on Model-Based Quantile Regression: Analyzing Excess-Zero Response 3. Bayesian Nonparametric Density Regression for Ordinal Responses 4. Non-standard Flexible Regression via Variational Bayes 5. Bayesian Mixed Binary-Continuous Copula Regression with an Application to Childhood Undernutrition 6. Bayesian Nonparametric Methods for Financial and Microeconomic Time Series Analysis 7. Bayesian Spectral Analysis Regression 8. Flexible Regression Modelling Under Shape Constraints 9. Scalable Bayesian Variable Selection for aNegative Binomial Regression Models. 
588 |a Description based on CIP data; resource not viewed. 
520 |a Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods. This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine. 
650 0 |a Regression analysis  |x Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh2009006876 
650 0 |a Bayesian statistical decision theory.  |0 http://id.loc.gov/authorities/subjects/sh85012506 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
650 7 |a Regression analysis  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01093277 
655 4 |a Electronic books. 
700 1 |a Fan, Y.  |q (Yanan),  |e editor.  |0 http://id.loc.gov/authorities/names/n2018025530 
700 1 |a Nott, David,  |e editor.  |0 http://id.loc.gov/authorities/names/n86830970 
700 1 |a Smith, Mike S.,  |e editor. 
700 1 |a Dortet-Bernadet, Jean-Luc,  |e editor. 
776 0 8 |i Print version:  |z 9780128158623 
903 |a HeVa 
929 |a oclccm 
999 f f |i 609a47fd-653c-5f6c-94c9-fe28687812bb  |s 95fa311b-65ec-5796-8048-641e68950b34 
928 |t Library of Congress classification  |a QA278.2 .F54 2019  |l Online  |c UC-FullText  |u https://www.sciencedirect.com/science/book/9780128158623  |z Elsevier  |g ebooks  |i 11587872