Bioinformatics for cancer immunotherapy : methods and protocols /

Saved in:
Bibliographic Details
Imprint:New York, NY : Humana Press, [2020]
Description:1 online resource (xii, 304 pages) : illustrations
Language:English
Series:Methods in molecular biology, 1940-6029 ; 2120
Methods in molecular biology (Clifton, N.J.) ; v. 2120.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12284109
Hidden Bibliographic Details
Other authors / contributors:Boegel, Sebastian, editor.
ISBN:9781071603277
1071603272
9781071603260
1071603264
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed January 25, 2021).
Summary:This volume focuses on a variety of in silico protocols of the latest bioinformatics tools and computational pipelines developed for neo-antigen identification and immune cell analysis from high-throughput sequencing data for cancer immunotherapy. The chapters in this book cover topics that discuss the two emerging concepts in recognition of tumor cells using endogenous T cells: cancer vaccines against neo-antigens presented on HLA class I and II alleles, and checkpoint inhibitors. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Bioinformatics for Cancer Immunotherapy: Methods and Protocols is a valuable research tool for any scientist and researcher interested in learning more about this exciting and developing field.
Other form:Printed edition 9781071603260
Printed edition 9781071603284
Printed edition 9781071603291
Standard no.:10.1007/978-1-0716-0327-7

MARC

LEADER 00000cam a2200000 i 4500
001 12284109
006 m o d
007 cr cnu||||||||
008 200302s2020 nyua ob 001 0 eng
005 20250303141710.5
016 7 |a 101774065  |2 DNLM 
019 |a 1148224843 
020 |a 9781071603277  |q (eBook) 
020 |a 1071603272  |q (eBook) 
020 |z 9781071603260 
020 |z 1071603264 
024 7 |a 10.1007/978-1-0716-0327-7  |2 doi 
035 9 |a (OCLCCM-CC)1144555958 
035 |a (OCoLC)1144555958  |z (OCoLC)1148224843 
040 |a NLM  |b eng  |e rda  |e pn  |c NLM  |d WIC  |d GW5XE  |d SCB  |d OCLCF  |d YDX  |d AU@  |d OCLCO  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCO 
042 |a pcc 
049 |a MAIN 
050 4 |a RC271.I45 
050 4 |a RC261-271 
060 0 0 |a W1  |b ME9616J v.2120 2020 
060 1 0 |a QZ 25 
072 7 |a MJCL  |2 bicssc 
072 7 |a MED062000  |2 bisacsh 
072 7 |a MJCL  |2 thema 
245 0 0 |a Bioinformatics for cancer immunotherapy :  |b methods and protocols /  |c edited by Sebastian Boegel. 
264 1 |a New York, NY :  |b Humana Press,  |c [2020] 
300 |a 1 online resource (xii, 304 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Methods in molecular biology,  |x 1940-6029 ;  |v 2120 
504 |a Includes bibliographical references and index. 
505 0 |a Bioinformatics for Cancer Immunotherapy -- An Individualized Approach for Somatic Variant Discovery -- Ensemble-Based Somatic Mutation Calling in Cancer Genomes -- SomaticSeq: An Ensemble and Machine Learning Method to Detect Somatic Mutations -- HLA Typing from RNA Sequencing and Applications to Cancer -- Rapid High-Resolution Typing of Class I HLA Genes by Nanopore Sequencing -- HLApers: HLA Typing and Quantification of Expression with Personalized Index -- High-Throughput MHC I Ligand Prediction using MHCflurry -- In Silico Prediction of Tumor Neoantigens with TIminer -- OpenVax: An Open-Source Computational Pipeline for Cancer Neoantigen Prediction -- Improving MHC-I Ligand Identification by Incorporating Targeted Searches of Mass Spectrometry Data -- The SysteMHC Atlas: A Computational Pipeline, A Website, and A Data Repository for Immunopeptidomics Analysis -- Identification of Epitope-Specific T Cells in T Cell Receptor Repertoires -- Modeling and Viewing T Cell Receptors using TCRmodel and TCR3d -- In Silico Cell Type Deconvolution Methods in Cancer Immunotherapy -- Immunedeconv -- An R Package for Unified Access to Computational Methods for Estimating Immune Cell Fractions from Bulk RNA Sequencing Data -- EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data -- Computational Deconvolution of Tumor-Infiltrating Immune Components with Bulk Tumor Gene Expression Data -- Cell Type Enrichment Analysis of Bulk Transcriptomes using xCell -- Cap Analysis of Gene Expression (CAGE), A Quantitative and Genome-Wide Assay of Transcription Start Sites. 
520 |a This volume focuses on a variety of in silico protocols of the latest bioinformatics tools and computational pipelines developed for neo-antigen identification and immune cell analysis from high-throughput sequencing data for cancer immunotherapy. The chapters in this book cover topics that discuss the two emerging concepts in recognition of tumor cells using endogenous T cells: cancer vaccines against neo-antigens presented on HLA class I and II alleles, and checkpoint inhibitors. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Bioinformatics for Cancer Immunotherapy: Methods and Protocols is a valuable research tool for any scientist and researcher interested in learning more about this exciting and developing field. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed January 25, 2021). 
650 0 |a Cancer  |x Immunotherapy  |v Laboratory manuals. 
650 0 |a Cancer  |x Research.  |0 http://id.loc.gov/authorities/subjects/sh85019539 
650 0 |a Bioinformatics.  |0 http://id.loc.gov/authorities/subjects/sh00003585 
650 0 |a Immunology.  |0 http://id.loc.gov/authorities/subjects/sh85064579 
650 0 |a Computational biology.  |0 http://id.loc.gov/authorities/subjects/sh2003008355 
650 1 2 |a Neoplasms  |x therapy  |0 https://id.nlm.nih.gov/mesh/D009369Q000628 
650 1 2 |a Immunotherapy  |x methods  |0 https://id.nlm.nih.gov/mesh/D007167Q000379 
650 2 2 |a Computational Biology  |x methods 
650 2 |a Computational Biology  |0 https://id.nlm.nih.gov/mesh/D019295 
650 2 |a Allergy and Immunology  |0 https://id.nlm.nih.gov/mesh/D000486 
650 6 |a Cancer  |x Immunothérapie  |v Manuels de laboratoire. 
650 6 |a Cancer  |x Recherche. 
650 6 |a Bio-informatique. 
650 6 |a Immunologie. 
650 7 |a Computational biology  |2 fast 
650 7 |a Bioinformatics  |2 fast 
650 7 |a Cancer  |x Immunotherapy  |2 fast 
650 7 |a Cancer  |x Research  |2 fast 
650 7 |a Immunology  |2 fast 
655 2 |a Laboratory Manual 
655 7 |a Laboratory manuals  |2 fast 
655 7 |a Laboratory manuals.  |2 lcgft  |0 http://id.loc.gov/authorities/genreForms/gf2014026120 
655 7 |a Manuels de laboratoire.  |2 rvmgf 
700 1 |a Boegel, Sebastian,  |e editor. 
776 0 8 |i Printed edition  |z 9781071603260 
776 0 8 |i Printed edition  |z 9781071603284 
776 0 8 |i Printed edition  |z 9781071603291 
830 0 |a Methods in molecular biology (Clifton, N.J.) ;  |v v. 2120.  |x 1064-3745  |0 http://id.loc.gov/authorities/names/n92002874 
856 4 0 |u https://link.springer.com/10.1007/978-1-0716-0327-7  |y Springer Nature 
903 |a HeVa 
929 |a oclccm 
999 f f |i de20c558-f07a-5879-bb40-8661873a5c3c  |s 806c8029-3650-5d6a-baa7-24d91120de53 
928 |t Library of Congress classification  |a RC271.I45  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-1-0716-0327-7  |z Springer Nature  |g ebooks  |i 12566273