Relativistic quantum field theory. Volume 2, Path integral formalism /
Saved in:
Author / Creator: | Strickland, M. T. (Michael Thomas), 1969- author. |
---|---|
Imprint: | San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2019] Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019] |
Description: | 1 online resource (various pagings) : illustrations (some color). |
Language: | English |
Series: | [IOP release 6] IOP concise physics, 2053-2571 IOP series in nuclear spectroscopy and nuclear structure IOP (Series). Release 6. IOP concise physics. IOP series in nuclear spectroscopy and nuclear structure. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/12385510 |
Table of Contents:
- 1. Path integral formulation of quantum mechanics
- 1.1. The transition probability amplitude
- 1.2. Derivation of the quantum mechanical path integral
- 1.3. Path integral in terms of the Lagrangian
- 1.4. Computing simple path integrals
- 1.5. Calculating time-ordered expectation values
- 1.6. Adding sources
- 1.7. Asymptotic states and vacuum-vacuum transitions
- 1.8. Generating functional and Green's function for quadratic theories
- 1.9. Euclidean path integral and the statistical mechanics partition function
- 2. Path integrals for scalar fields
- 2.1. Generating functional for a free real scalar field
- 2.2. Interacting real scalar field theory
- 2.3. Generating functional for connected diagrams
- 2.4. The self-energy
- 2.5. The effective action and vertex functions
- 2.6. Generating function for one-particle irreducible graphs
- 2.7. Interacting complex scalar fields
- 3. Path integrals for fermionic fields
- 3.1. Finite-dimensional Grassmann algebra
- 3.2. Path integral for a free Dirac field
- 3.3. Path integral for an interacting Dirac field
- 3.4. Fermion loops
- 4. Path integrals for abelian gauge fields
- 4.1. Free abelian gauge theory
- 4.2. The photon propagator
- 4.3. Generating functional for abelian gauge fields in general Lorenz gauge
- 4.4. Generating functional for QED in general Lorenz gauge
- 4.5. General Lorenz-gauge QED generating functional to O(e2)
- 4.6. QED effective action and vertex functions
- 4.7. Ward-Takahashi identities
- 5. Groups and Lie groups
- 5.1. Group theory basics
- 5.2. Examples
- 5.3. Representations of groups
- 5.4. The group U(1)
- 5.5. The group SU(2)
- 5.6. The group SU(3)
- 5.7. The group SU(N)
- 5.8. The Haar measure
- 6. Path integral formulation of quantum chromodynamics
- 6.1. The Fadeev-Popov method
- 6.2. QCD Feynman rules
- 6.3. Simple example application of the QCD Feynman rules
- 6.4. Becchi, Rouet, Stora, and Tyutin symmetry
- 6.5. Slavnov-Taylor identities
- 7. Renormalization of QCD
- 7.1. Divergences in scalar field theories
- 7.2. Divergences in Yang-Mills theory
- 7.3. Dimensional regularization refresher
- 7.4. One-loop renormalization of QCD
- 7.5. The one-loop QCD running coupling
- 8. Topological objects in field theory
- 8.1. The kinky sine-Gordon model
- 8.2. Two-dimensional vortex lines
- 8.3. Topological solutions in Yang-Mills
- 8.4. The instanton
- 8.5. The Potryagin index
- 8.6. Explicit solution for a q = 1 instanton
- 8.7. Quantum tunneling, [theta]-vacua, and symmetry breaking
- 8.8. Quantum anomalies
- 8.9. An effective Lagrangian for the anomaly
- 8.10. Instantons and the chiral anomaly
- 8.11. Perturbation theory for the chiral anomaly.