Spatial dependence and data-driven networks of international banks /

Saved in:
Bibliographic Details
Author / Creator:Craig, Ben R., author.
Imprint:[Washington, D.C.] : International Monetary Fund, [2016]
©2016
Description:1 online resource (34 pages) : color illustrations
Language:English
Series:IMF working paper ; WP/16/184
IMF working paper ; WP/16/184.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12507619
Hidden Bibliographic Details
Other authors / contributors:Salidas, Martin, author, (IMF staff)
International Monetary Fund, publisher.
International Monetary Fund. Monetary and Capital Markets Department, issuing body.
ISBN:9781475536706
1475536704
9781475537840
1475537840
Notes:"September 2016."
At head of title: International Monetary Fund, Monetary and Capital Markets Department.
Includes bibliographical references.
Online resource; title from pdf title page (IMF.org website, viewed October 17, 2016).
Summary:This paper computes data-driven correlation networks based on the stock returns of international banks and conducts a comprehensive analysis of their topological properties. We first apply spatial-dependence methods to filter the effects of strong common factors and a thresholding procedure to select the significant bilateral correlations. The analysis of topological characteristics of the resulting correlation networks shows many common features that have been documented in the recent literature but were obtained with private information on banks' exposures, including rich and hierarchical structures, based on but not limited to geographical proximity, small world features, regional homophily, and a core-periphery structure.
Other form:Print Version: Craig, Ben. Spatial Dependence and Data-Driven Networks of International Banks. Washington, D.C. : International Monetary Fund,2016 9781475536706
Standard no.:10.5089/9781475536706.001

MARC

LEADER 00000cam a2200000Ii 4500
001 12507619
006 m o d i
007 cr |n|||||||||
008 161014t20162016dcua ob i000 0 eng d
005 20240822222010.9
020 |a 9781475536706 
020 |a 1475536704 
020 |a 9781475537840  |q (electronic book) 
020 |a 1475537840  |q (electronic book) 
024 7 |a 10.5089/9781475536706.001  |2 doi 
035 9 |a (OCLCCM-CC)960706866 
035 |a (OCoLC)960706866 
037 |a 960658  |b MIL 
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d EBLCP  |d DJB  |d IDB  |d CUS  |d UWO  |d OTZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d IDEBK  |d WRM  |d OCLCF  |d CEF  |d OCLCQ  |d OCLCO 
049 |a MAIN 
050 4 |a HG3881.5.I58  |b W67 No. 16/184eb 
100 1 |a Craig, Ben R.,  |e author.  |0 http://id.loc.gov/authorities/names/n2006060608 
245 1 0 |a Spatial dependence and data-driven networks of international banks /  |c prepared by Ben R. Craig and Martín Saldías. 
264 1 |a [Washington, D.C.] :  |b International Monetary Fund,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource (34 pages) :  |b color illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IMF working paper ;  |v WP/16/184 
500 |a "September 2016." 
500 |a At head of title: International Monetary Fund, Monetary and Capital Markets Department. 
504 |a Includes bibliographical references. 
520 3 |a This paper computes data-driven correlation networks based on the stock returns of international banks and conducts a comprehensive analysis of their topological properties. We first apply spatial-dependence methods to filter the effects of strong common factors and a thresholding procedure to select the significant bilateral correlations. The analysis of topological characteristics of the resulting correlation networks shows many common features that have been documented in the recent literature but were obtained with private information on banks' exposures, including rich and hierarchical structures, based on but not limited to geographical proximity, small world features, regional homophily, and a core-periphery structure. 
588 0 |a Online resource; title from pdf title page (IMF.org website, viewed October 17, 2016). 
650 0 |a Banks and banking, International  |x Econometric models. 
650 0 |a Financial risk management  |x Econometric models. 
650 6 |a Banques internationales  |x Modèles économétriques. 
650 6 |a Finances  |x Gestion du risque  |x Modèles économétriques. 
650 7 |a Banks and banking, International  |x Econometric models.  |2 fast  |0 (OCoLC)fst00827106 
655 4 |a Electronic books. 
700 1 |a Salidas, Martin,  |e author,  |e (IMF staff)  |0 http://id.loc.gov/authorities/names/no2016138717 
710 2 |a International Monetary Fund,  |e publisher.  |0 http://id.loc.gov/authorities/names/n81052755 
710 2 |a International Monetary Fund.  |b Monetary and Capital Markets Department,  |e issuing body.  |0 http://id.loc.gov/authorities/names/no2006113696 
776 0 8 |i Print Version:  |a Craig, Ben.  |t Spatial Dependence and Data-Driven Networks of International Banks.  |d Washington, D.C. : International Monetary Fund,2016  |z 9781475536706 
830 0 |a IMF working paper ;  |v WP/16/184.  |0 http://id.loc.gov/authorities/names/no89010263 
856 4 0 |u http://elibrary.imf.org/view/journals/001/2016/184/001.2016.issue-184-en.xml  |y INTERNATIONAL MONETARY FUND 
929 |a oclccm 
999 f f |i 63d36c56-f58d-52c1-abd3-4222b8bfab9e  |s ccea868e-867a-5a78-8cea-01bcfd500a40 
928 |t Library of Congress classification  |a HG3881.5.I58W67 No. 16/184eb  |l Online  |c UC-FullText  |u http://elibrary.imf.org/view/journals/001/2016/184/001.2016.issue-184-en.xml  |z INTERNATIONAL MONETARY FUND  |g ebooks  |i 12152058