Machine learning guide for oil and gas using Python : a step-by-step breakdown with data, algorithms, codes, and applications /

Saved in:
Bibliographic Details
Author / Creator:Belyadi, Hoss, author.
Imprint:Cambridge, MA : Gulf Professional Publishing, 2021.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12567613
Hidden Bibliographic Details
Other authors / contributors:Haghighat, Alireza, author.
ISBN:9780128219300
0128219300
9780128219294
0128219297
Notes:Includes bibliographical references and index.
Summary:Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.
Other form:Print version: 0128219297 9780128219294

MARC

LEADER 00000cam a2200000Ii 4500
001 12567613
005 20210528161034.9
006 m o d
007 cr |n|||||||||
008 210416s2021 mau o 000 0 eng d
019 |a 1246142343  |a 1249100538 
020 |a 9780128219300  |q (electronic bk.) 
020 |a 0128219300  |q (electronic bk.) 
020 |a 9780128219294  |q (electronic bk.) 
020 |a 0128219297  |q (electronic bk.) 
035 |a (OCoLC)1246283594  |z (OCoLC)1246142343  |z (OCoLC)1249100538 
035 9 |a (OCLCCM-CC)1246283594 
037 |a 6546221  |b Proquest Ebook Central 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OPELS  |d OCLCO  |d OCLCF  |d GZM  |d UAB  |d OPELS  |d N$T 
049 |a MAIN 
050 4 |a TN871 
100 1 |a Belyadi, Hoss,  |e author.  |0 http://id.loc.gov/authorities/names/no2018029339  |1 http://viaf.org/viaf/249149717607010951927 
245 1 0 |a Machine learning guide for oil and gas using Python :  |b a step-by-step breakdown with data, algorithms, codes, and applications /  |c Hoss Belyadi, Alireza Haghighat. 
264 1 |a Cambridge, MA :  |b Gulf Professional Publishing,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
504 |a Includes bibliographical references and index. 
520 |a Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. 
650 0 |a Petroleum engineering  |x Data processing. 
650 0 |a Natural gas  |x Data processing. 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Natural gas  |x Data processing.  |2 fast  |0 (OCoLC)fst01034062 
650 7 |a Petroleum engineering  |x Data processing.  |2 fast  |0 (OCoLC)fst01059499 
655 4 |a Electronic books. 
700 1 |a Haghighat, Alireza,  |e author.  |0 http://id.loc.gov/authorities/names/no2015009580  |1 http://viaf.org/viaf/313499651 
776 0 8 |i Print version:  |z 0128219297  |z 9780128219294  |w (OCoLC)1195448296 
903 |a HeVa 
929 |a oclccm 
999 f f |i 34525589-1901-5fb8-8a93-a6a2e676ecd3  |s 5a4ad3e3-f062-5484-9d27-ce283ddf396b 
928 |t Library of Congress classification  |a TN871  |l Online  |c UC-FullText  |u https://www.sciencedirect.com/science/book/9780128219294  |z Elsevier  |g ebooks  |i 12488197