Facts, conjectures, and improvements for simulated annealing /

Saved in:
Bibliographic Details
Author / Creator:Salamon, Peter, 1950-
Imprint:Philadelphia, Pa. : Society for Industrial and Applied Mathematics, ©2002.
Description:1 online resource (xiii, 150 pages) : illustrations
Language:English
Series:SIAM monographs on mathematical modeling and computation
SIAM monographs on mathematical modeling and computation.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12577290
Hidden Bibliographic Details
Other authors / contributors:Sibani, Paolo, 1954-
Frost, Richard, 1955-
ISBN:0898715083
9780898715088
9780898718300
0898718309
Notes:Includes bibliographical references (pages 129-137) and index.
Restrictions unspecified
Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010.
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212
digitized 2010 HathiTrust Digital Library committed to preserve
Summary:An introduction to simulated annealing. This book brings together for the first time many of the theoretical foundations for improvements to algorithms for global optimization that until now existed only in scattered research articles.
Other form:Print version: Salamon, Peter, 1950- Facts, conjectures, and improvements for simulated annealing. Philadelphia, Pa. : Society for Industrial and Applied Mathematics, ©2002 0898715083
Standard no.:MM07
Publisher's no.:MM07 siam
Table of Contents:
  • List of Figures
  • Preface
  • Acknowledgments
  • I. Overview
  • 1. The Place of Simulated Annealing in the Arsenal of Global Optimization
  • 2. Six Simulated Annealing Problems
  • 2.1. Problem Definitions
  • 2.2. Move Classes
  • 3. Nomenclature
  • 4. Bare-Bones Simulated Annealing
  • II. Facts
  • 5. Equilibrium Statistical Mechanics
  • 5.1. The Number of States That Realize a Distribution
  • 5.2. Derivation of the Boltzmann Distribution
  • 5.3. Averages and Fluctuations
  • 6. Relaxation Dynamics--Finite Markov Chains
  • 6.1. Finite Markov Chains
  • 6.2. Reversibility and Stationary Distributions
  • 6.3. Relaxation to the Stationary Distribution
  • 6.4. Equilibrium Fluctuations
  • 6.4.1. The Correlation Function
  • 6.4.2. Linear Response and the Decay of the Correlation Function
  • 6.5. Standard Examples of the Relaxation Paradigm
  • 6.5.1. Two-State System
  • 6.5.2. A Folk Theorem--Arrhenius' or Kramers' Law
  • 6.6. Glassy Systems
  • III. Improvements and Conjectures
  • 7. Ensembles
  • 8. The Brick Wall Effect and Optimal Ensemble Size
  • 9. The Objective Function
  • 9.1. Imperfectly Known Objective
  • 9.2. Implications of Noise
  • 9.3. Deforming the Energy
  • 9.4. Eventually Monotonic Deformations
  • 10. Move Classes and Their Implementations
  • 10.1. What Makes a Move Class Good?
  • 10.1.1. Natural Scales
  • 10.1.2. Correlation Length and Correlation Time
  • 10.1.3. Relaxation Time at Finite T
  • 10.1.4. Combinatorial Work
  • 10.2. More Refined Move Schemes
  • 10.2.1. Basin Hopping
  • 10.2.2. Fast Annealing
  • 10.2.3. Rejectionless Monte Carlo
  • 11. Acceptance Rules
  • 11.1. Tsallis Acceptance Probabilities
  • 11.2. Threshold Accepting
  • 11.3. Optimality of Threshold Accepting
  • 12. Thermodynamic Portraits
  • 12.1. Equilibrium Information
  • 12.1.1. Histogram Method
  • 12.2. Dynamic Information
  • 12.2.1. Transition Matrix Method
  • 12.3. Time-Resolved Information
  • 12.A. Appendix: Why Lumping Preserves the Stationary Distribution
  • 13. Selecting the Schedule
  • 13.1. Start and Stop Temperatures
  • 13.2. Simple Schedules
  • 13.2.1. The Sure-to-Get-You-There Schedule
  • 13.2.2. The Exponential Schedule
  • 13.2.3. Other Simple Schedules
  • 13.3. Adaptive Cooling
  • 13.3.1. Using the System's Scale of Time
  • 13.3.2. Using the System's Scale of Energy
  • 13.3.3. Using Both Energy and Time Scales
  • 13.4. Nonmonotonic Schedules
  • 13.5. Conclusions Regarding Schedules
  • 14. Estimating the Global Minimum Energy
  • IV. Toward Structure Theory and Real Understanding
  • 15. Structure Theory of Complex Systems
  • 15.1. The Coarse Structure of the Landscape
  • 15.2. Exploring the State Space Structure: Tools and Concepts
  • 15.3. The Structure of a Basin
  • 15.4. Examples
  • 15.A. Appendix: Entropic Barriers
  • 15.A.1. The Master Equation
  • 15.A.2. Random Walks on Flat Landscapes
  • 15.A.3. Bounds on Relaxation Times for General Graphs
  • 16. What Makes Annealing Tick?
  • 16.1. The Dynamics of Draining a Basin
  • 16.2. Putting It Together
  • 16.3. Conclusions
  • V. Resources
  • 17. Supplementary Materials
  • 17.1. Software
  • 17.1.1. Simulated Annealing from the Web
  • 17.1.2. The Methods of This Book
  • 17.1.3. Software Libraries
  • 17.2. Energy Landscapes Database
  • Bibliography
  • Index