Summary: | Time delays are important components of many systems in, for instance, engineering, physics, economics, and the life sciences, because the transfer of material, energy, and information is usually not instantaneous. Time delays may appear as computation and communication lags, they model transport phenomena and heredity, and they arise as feedback delays in control loops. This monograph addresses the problem of stability analysis, stabilization, and robust fixed-order control of dynamical systems subject to delays, including both retarded- and neutral-type systems. Within the eigenvalue-based framework, an overall solution is given to the stability analysis, stabilization, and robust control design problem, using both analytical methods and numerical algorithms and applicable to a broad class of linear time-delay systems. Make the leap from stabilization to the design of robust and optimal controllers and from retarded-type to neutral-type delay systems, thus enlarging the scope of the book within control; include new, state-of-the-art material on numerical methods and algorithms to broaden the book's focus and to reach additional research communities, in particular numerical linear algebra and numerical optimization; and increase the number and range of applications to better illustrate the effectiveness and generality of their approach.
|