Mathematical models : mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics /

Saved in:
Bibliographic Details
Author / Creator:Haberman, Richard, 1945-
Imprint:Philadelphia : Society for Industrial and Applied Mathematics, ©1998.
Description:1 online resource (xvii, 402 pages) : illustrations.
Language:English
Series:Classics in applied mathematics ; 21
Classics in applied mathematics ; 21.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12577615
Hidden Bibliographic Details
Varying Form of Title:Mathematical Models Mechanical Vibrations, Populations Dynamics and Traffic Flow
ISBN:0898714087
9780898714081
1611971152
9781611971156
Notes:"This SIAM edition is an unabridged republication of the work first published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977"--Title page verso.
Includes bibliographical references and index.
English.
Summary:The author uses mathematical techniques along with observations and experiments to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow. Equal emphasis is placed on the mathematical formulation of the problem and the interpretation of the results. In the sections on mechanical vibrations and population dynamics, the author emphasizes the nonlinear aspects of ordinary differential equations and develops the concepts of equilibrium solutions and their stability. He introduces phase plane methods for the nonlinear pendulum and for predator-prey and competing species models. Haberman develops the method of characteristics to analyze the nonlinear partial differential equations that describe traffic flow. Fan-shaped characteristics describe the traffic situation that occurs when a traffic light turns green and shock waves describe the effects of a red light or traffic accident. Although it was written over 20 years ago, this book is still relevant. It is intended as an introduction to applied mathematics, but can be used for undergraduate courses in mathematical modeling or nonlinear dynamical systems or to supplement courses in ordinary or partial differential equations.

MARC

LEADER 00000cam a2200000Ma 4500
001 12577615
005 20210730045543.1
006 m o d
007 cr |||||||||||
008 980226s1998 nyua ob 001 0 eng d
019 |a 228147831  |a 228147832  |a 696627382  |a 1120857127 
020 |a 0898714087 
020 |a 9780898714081 
020 |a 1611971152 
020 |a 9781611971156 
035 |a (OCoLC)990455863  |z (OCoLC)228147831  |z (OCoLC)228147832  |z (OCoLC)696627382  |z (OCoLC)1120857127 
035 9 |a (OCLCCM-CC)990455863 
040 |a LIP  |b eng  |c LIP  |d OCLCO  |d UV0  |d OCLCF  |d M6U  |d COO  |d OCLCQ  |d OCL  |d AU@ 
049 |a MAIN 
050 1 4 |a QA37.2  |b .H2 1998 
100 1 |a Haberman, Richard,  |d 1945-  |0 http://id.loc.gov/authorities/names/n82119458  |1 http://viaf.org/viaf/109292332 
245 1 0 |a Mathematical models :  |b mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics /  |c Richard Haberman. 
246 3 |a Mathematical Models Mechanical Vibrations, Populations Dynamics and Traffic Flow 
260 |a Philadelphia :  |b Society for Industrial and Applied Mathematics,  |c ©1998. 
300 |a 1 online resource (xvii, 402 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Classics in applied mathematics ;  |v 21 
500 |a "This SIAM edition is an unabridged republication of the work first published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977"--Title page verso. 
504 |a Includes bibliographical references and index. 
546 |a English. 
505 0 |a Foreword -- Preface to the Classics edition -- Preface -- Part 1. Mechanical vibrations. introduction to mathematical models in the physical sciences -- Part 2. Population dynamics -- mathematical ecology -- Part 3. Traffic flow -- Index. 
520 3 |a The author uses mathematical techniques along with observations and experiments to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow. Equal emphasis is placed on the mathematical formulation of the problem and the interpretation of the results. In the sections on mechanical vibrations and population dynamics, the author emphasizes the nonlinear aspects of ordinary differential equations and develops the concepts of equilibrium solutions and their stability. He introduces phase plane methods for the nonlinear pendulum and for predator-prey and competing species models. Haberman develops the method of characteristics to analyze the nonlinear partial differential equations that describe traffic flow. Fan-shaped characteristics describe the traffic situation that occurs when a traffic light turns green and shock waves describe the effects of a red light or traffic accident. Although it was written over 20 years ago, this book is still relevant. It is intended as an introduction to applied mathematics, but can be used for undergraduate courses in mathematical modeling or nonlinear dynamical systems or to supplement courses in ordinary or partial differential equations. 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 0 |a Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh85082124 
650 0 |a Vibration  |x Mathematical models. 
650 0 |a Ecology  |x Mathematical models. 
650 0 |a Traffic flow  |x Mathematical models. 
650 0 |a Mathematics  |x Mathematical models. 
650 0 |a Ecology.  |0 http://id.loc.gov/authorities/subjects/sh85040752 
650 0 |a Traffic flow.  |0 http://id.loc.gov/authorities/subjects/sh85136769 
650 7 |a Traffic flow.  |2 fast  |0 (OCoLC)fst01154142 
650 7 |a Ecology.  |2 fast  |0 (OCoLC)fst00901476 
650 7 |a Ecology  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00901509 
650 7 |a Mathematical models.  |2 fast  |0 (OCoLC)fst01012085 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Traffic flow  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01154154 
650 7 |a Vibration  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01166172 
650 7 |a Mathematics.  |2 hilcc 
650 7 |a Physical Sciences & Mathematics.  |2 hilcc 
650 7 |a Mathematics - General.  |2 hilcc 
655 4 |a Electronic books. 
830 0 |a Classics in applied mathematics ;  |v 21.  |0 http://id.loc.gov/authorities/names/n89666203 
903 |a HeVa 
929 |a oclccm 
999 f f |i d017583c-fedc-5ba7-b274-d50b318dd977  |s e1f3c0f4-8bd2-5595-85ee-b5da5675c0ce 
928 |t Library of Congress classification  |a QA37.2 .H2 1998  |l Online  |c UC-FullText  |u https://epubs.siam.org/doi/book/10.1137/1.9781611971156  |z Society for Industrial and Applied Mathematics  |g ebooks  |i 12568999