Advances in microbial physiology. Volume 77 /

Saved in:
Bibliographic Details
Imprint:London, United Kingdom : Academic Press, 2020.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12592225
Hidden Bibliographic Details
Other authors / contributors:Poole, Robert K.
ISBN:9780128207499
0128207493
9780128207482
0128207485
Other form:ebook version : 9780128207499
Original 0128207485 9780128207482
Table of Contents:
  • Intro
  • Advances in Microbial Physiology
  • Copyright
  • Contents
  • Contributors
  • Chapter One: Microbubble intensification of bioprocessing
  • 1. Introduction
  • 2. Fluidic oscillation generated microbubbles and physical chemical features exploitable for bioprocessing
  • 2.1. Microbubble cloud generation
  • 2.2. Exploiting physical chemistry of microbubbles for bio/processing
  • 2.2.1. Mass transfer increase
  • 2.2.2. The physical chemistry of liquid mixing
  • 2.2.3. Flotation segregation chemistry of microorganisms via microbubbles
  • 2.2.4. Microbubble distillation and evaporation operations
  • 2.2.5. Microbubble interfacial reactions
  • 3. Uses of microbubbles in the growth of microalgae
  • 3.1. Photoautotrophic growth
  • 3.2. Mixotrophic growth
  • 3.3. Heterotrophic growth
  • 4. Uses of microbubbles in wastewater and sewage treatment
  • 4.1. Activated sludge aeration
  • 4.2. Disinfection of biomass
  • 4.3. Pretreatment of biomass
  • 4.4. Treatment of ammonia-rich wastewaters
  • 5. Conclusions
  • Acknowledgments
  • References
  • Chapter Two: Zymomonas mobilis metabolism: Novel tools and targets for its rational engineering
  • 1. Introduction
  • 2. Central carbon metabolism
  • 2.1. Glycolysis
  • 2.2. Pentose phosphate pathway
  • 2.3. Tricarboxylic acid cycle and anaplerotic reactions
  • 3. Kinetics and regulation of the E-D pathway
  • 3.1. Rate of glycolysis
  • 3.2. Flux control
  • 3.3. In silico simulation
  • 3.4. Heterologous expression of the EMP pathway
  • 4. Respiration
  • 4.1. Electron carriers and energy generation
  • 4.2. Redox balancing
  • 4.3. Stress resistance
  • 4.4. Aerobic performance of respiration-deficient strains
  • 5. Omic studies in aid of metabolic engineering
  • 5.1. Genomic analyses
  • 5.2. Transcriptomics and profiling
  • 5.3. Proteomics and metabolomics
  • 6. Methods and tools for metabolic engineering of Z. mobilis
  • 6.1. Expression of heterologous genes
  • 6.2. Plasmid vectors for Z. mobilis
  • 6.3. Gene integration and knock out
  • 7. Conclusions and perspective
  • Acknowledgements
  • References
  • Chapter Three: Bacterial cellulose: Biosynthesis, production, and applications
  • 1. Introduction
  • 2. Ecological niches
  • 3. Biochemistry of BC
  • 3.1. Machinery of BC synthesis
  • 4. BC production
  • 4.1. Static cultivation
  • 4.2. Submerged cultivation
  • 4.3. Culture media
  • 4.4. Effect of pH and oxygen
  • 4.5. Role of additives
  • 4.6. Strategies for strain/process improvement
  • 4.7. Downstream processing
  • 5. Applications
  • 5.1. Food industry
  • 5.2. Biomedical applications
  • 5.3. Superabsorbents
  • 5.4. Bioremediation
  • 6. Outlook
  • Acknowledgments
  • Author contributions
  • References
  • Chapter Four: Microbial energy management-A product of three broad tradeoffs
  • 1. Introduction
  • 2. Tradeoffs that have shaped microbial energy management
  • 2.1. Economic tradeoffs: An exchange of energetic efficiency for functionality (Fig. 1A)