Bayesian networks for reliability engineering /

Saved in:
Bibliographic Details
Author / Creator:Cai, Baoping, author.
Imprint:Singapore : Springer, [2020]
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12601341
Hidden Bibliographic Details
Other authors / contributors:Liu, Yonghong, author.
Liu, Zengkai, author.
Chang, Yuanjiang, author.
Jiang, Lei, author.
ISBN:9789811365164
9811365164
9789811365157
Notes:Includes bibliographical references.
Online resource; title from PDF title page (EBSCO, viewed March 5, 2019).
Summary:This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering.
Standard no.:10.1007/978-981-13-6

MARC

LEADER 00000cam a2200000Ii 4500
001 12601341
005 20210813213023.0
006 m o d
007 cr cnu|||unuuu
008 190301s2020 si ob 000 0 eng d
015 |a GBB970817  |2 bnb 
016 7 |a 019361123  |2 Uk 
019 |a 1105181899 
020 |a 9789811365164  |q (electronic bk.) 
020 |a 9811365164  |q (electronic bk.) 
020 |z 9789811365157 
024 8 |a 10.1007/978-981-13-6 
035 |a (OCoLC)1088892301  |z (OCoLC)1105181899 
035 9 |a (OCLCCM-CC)1088892301 
037 |a com.springer.onix.9789811365164  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d GW5XE  |d UKMGB  |d NRC  |d OCLCF  |d LQU  |d OCLCQ 
049 |a MAIN 
050 4 |a QA279.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
100 1 |a Cai, Baoping,  |e author. 
245 1 0 |a Bayesian networks for reliability engineering /  |c Baoping Cai, Yonghong Liu, Zengkai Liu, Yuanjiang Chang and Lei Jiang. 
264 1 |a Singapore :  |b Springer,  |c [2020] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
588 |a Online resource; title from PDF title page (EBSCO, viewed March 5, 2019). 
505 0 |a Bayesian networks for reliability -- Using Bayesian networks in reliability evaluation for subsea blowout preventer control system -- Risk analysis of subsea blowout preventer by mapping GO models into Bayesian networks -- Reliability evaluation of auxiliary feedwater system by mapping GO-FLOW models into Bayesian networks -- Dynamic Bayesian networks based performance evaluation of subsea blowout preventers in presence of imperfect repair -- Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenance -- Dynamic Bayesian network modelling of reliability of subsea blowout preventer stack in presence of common cause failures -- A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults -- Real-time reliability evaluation methodology based on dynamic Bayesian networks -- Reliability evaluation methodology of complex systems based on dynamic object-oriented Bayesian networks -- Bayesian network-based risk analysis methodology, a case of atmospheric and vacuum distillation unit -- A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels -- Availability-based engineering resilience metric and its corresponding evaluation methodology. 
520 |a This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering. 
650 0 |a Bayesian statistical decision theory.  |0 http://id.loc.gov/authorities/subjects/sh85012506 
650 0 |a Reliability (Engineering)  |x Mathematical models. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
650 7 |a Reliability (Engineering)  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01093655 
655 4 |a Electronic books. 
700 1 |a Liu, Yonghong,  |e author. 
700 1 |a Liu, Zengkai,  |e author. 
700 1 |a Chang, Yuanjiang,  |e author. 
700 1 |a Jiang, Lei,  |e author. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 46e81736-d182-5ec5-948e-80e9a5efd688  |s d338234c-e460-5172-9da9-f2a4bfbde652 
928 |t Library of Congress classification  |a QA279.5  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-13-6516-4  |z Springer Nature  |g ebooks  |i 12616948