High-Performance Simulation-Based Optimization /

Saved in:
Bibliographic Details
Imprint:Cham : Springer, 2020.
Description:1 online resource (xiii, 291 pages) : illustrations (some color)
Language:English
Series:Studies in computational intelligence ; volume 833
Studies in computational intelligence ; v. 833.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12601507
Hidden Bibliographic Details
Other authors / contributors:Bartz-Beielstein, Thomas.
Filipič, Bogdan.
Korošec, Peter.
Talbi, El-Ghazali.
ISBN:9783030187644
3030187640
9783030187637
3030187632
Summary:This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. Thats where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.
Other form:Print version: High-Performance Simulation-Based Optimization. Cham : Springer, 2020 3030187632 9783030187637
Standard no.:10.1007/978-3-030-18

MARC

LEADER 00000cam a2200000 a 4500
001 12601507
005 20210813213023.0
006 m o d
007 cr nn||||mamaa
008 190603s2020 sz a o 000 0 eng d
015 |a GBC010514  |2 bnb 
016 7 |a 019431624  |2 Uk 
019 |a 1103463794 
020 |a 9783030187644  |q (electronic bk.) 
020 |a 3030187640  |q (electronic bk.) 
020 |z 9783030187637 
020 |z 3030187632 
024 7 |a 10.1007/978-3-030-18  |2 doi 
035 |a (OCoLC)1105192958  |z (OCoLC)1103463794 
035 9 |a (OCLCCM-CC)1105192958 
037 |a com.springer.onix.9783030187644  |b Springer Nature 
040 |a LQU  |b eng  |e pn  |c LQU  |d GW5XE  |d OCLCF  |d YDX  |d OCLCQ  |d UKMGB  |d OCLCQ 
049 |a MAIN 
050 4 |a QA402.5 
245 0 0 |a High-Performance Simulation-Based Optimization /  |c Thomas Bartz-Beielstein, Bogdan Filipič, Peter Korošec, El-Ghazali Talbi, editors. 
264 1 |a Cham :  |b Springer,  |c 2020. 
300 |a 1 online resource (xiii, 291 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies in computational intelligence ;  |v volume 833 
505 0 |a Infill Criteria for Multiobjective Bayesian Optimization -- Many-Objective Optimization with Limited Computing Budget -- Multi-Objective Bayesian Optimization for Engineering Simulation -- Automatic Configuration of Multi-Objective Optimizers and Multi-Objective Configuration -- Optimization and Visualization in Many-Objective Space Trajectory Design -- Simulation Optimization through Regression or Kriging Metamodels -- Towards Better Integration of Surrogate Models and Optimizers -- Surrogate-Assisted Evolutionary Optimization of Large Problems -- Overview and Comparison of Gaussian Process-Based Surrogate Models for Mixed Continuous and Discrete Variables: Application on Aerospace Design Problems -- Open Issues in Surrogate-Assisted Optimization -- A Parallel Island Model for Hypervolume-Based Many-Objective Optimization -- Many-Core Branch-and-Bound for GPU Accelerators and MIC Coprocessors. 
520 |a This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. Thats where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems. 
650 0 |a Mathematical optimization.  |0 http://id.loc.gov/authorities/subjects/sh85082127 
650 0 |a Simulation methods.  |0 http://id.loc.gov/authorities/subjects/sh85122767 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Simulation methods.  |2 fast  |0 (OCoLC)fst01119166 
655 4 |a Electronic books. 
700 1 |a Bartz-Beielstein, Thomas. 
700 1 |a Filipič, Bogdan. 
700 1 |a Korošec, Peter. 
700 1 |a Talbi, El-Ghazali. 
776 0 8 |i Print version:  |t High-Performance Simulation-Based Optimization.  |d Cham : Springer, 2020  |z 3030187632  |z 9783030187637  |w (OCoLC)1090831040 
830 0 |a Studies in computational intelligence ;  |v v. 833.  |0 http://id.loc.gov/authorities/names/no2005104439 
903 |a HeVa 
929 |a oclccm 
999 f f |i 35771f3e-bf35-5a83-8205-7cf2bda57a93  |s 0fcdc95f-c804-5ae2-8af0-b9bb2e816a81 
928 |t Library of Congress classification  |a QA402.5  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-18764-4  |z Springer Nature  |g ebooks  |i 12617114