Stochastic Approach to Rupture Probability of Short Glass Fiber Reinforced Polypropylene based on Three-Point-Bending Tests /

Saved in:
Bibliographic Details
Author / Creator:Sygusch, Nikolai, author.
Imprint:Wiesbaden, Germany : Springer Vieweg, [2020]
Description:1 online resource (x, 145 pages)
Language:English
Series:Mechanik, Werkstoffe und Konstruktion im Bauwesen ; Band 52
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12601679
Hidden Bibliographic Details
ISBN:9783658271138
3658271132
Notes:Online resource; title from digital title page (viewed on April 30, 2020).
Summary:A method for incorporating and comparing stochastic scatter of macroscopic parameters in crash simulations is developed in the present work and applied on a 30 wt.% short glass fiber reinforced polypropylene. Therefore, a statistical testing plan on the basis of three point bending tests with 30 samples for each configuration is carried out. The tests are conducted at 0°, 30°, 45° and 90° orientation angles and at strain rates of 0.021/s and 85/s. The obtained results are evaluated statistically by means of probability distribution functions. An orthotropic elastic plastic material model is utilized for the numerical investigations. Monte Carlo Simulations with variations in macroscopic parameters are run to emulate the stochastic rupture behavior of the experiments. The author Nikolai Sygusch was Research Associate at the Institute of Mechanics and Materials, Working Group Kolling, TH Mittelhessen, Giessen and has been a Ph. D. student from 2015 until 2018 at the crash simulation at Opel Automobile GmbH, Rüsselsheim am Main.
Standard no.:10.1007/978-3-658-27

MARC

LEADER 00000cam a2200000 i 4500
001 12601679
005 20210813213023.0
006 m o d
007 cr nn||||mamaa
008 190725s2020 gw o 000 0 eng d
020 |a 9783658271138  |q (electronic book) 
020 |a 3658271132  |q (electronic book) 
024 8 |a 10.1007/978-3-658-27 
035 |a (OCoLC)1110231554 
035 9 |a (OCLCCM-CC)1110231554 
040 |a LQU  |b eng  |e rda  |e pn  |c LQU  |d GW5XE  |d OCLCF  |d OCLCQ  |d YDXIT  |d OCLCQ 
049 |a MAIN 
050 4 |a TA455.P55  |b S94 2020 
050 4 |a TA450 
100 1 |a Sygusch, Nikolai,  |e author. 
245 1 0 |a Stochastic Approach to Rupture Probability of Short Glass Fiber Reinforced Polypropylene based on Three-Point-Bending Tests /  |c Nikolai Sygusch. 
264 1 |a Wiesbaden, Germany :  |b Springer Vieweg,  |c [2020] 
300 |a 1 online resource (x, 145 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Mechanik, Werkstoffe und Konstruktion im Bauwesen ;  |v Band 52 
505 0 |a Introduction -- State of the Art -- Mechanical Testing -- Statistical Analysis -- Material Modeling -- Numerical Results -- Summary and Outlook -- Bibliograph -- List of symbols -- Appendix. 
520 |a A method for incorporating and comparing stochastic scatter of macroscopic parameters in crash simulations is developed in the present work and applied on a 30 wt.% short glass fiber reinforced polypropylene. Therefore, a statistical testing plan on the basis of three point bending tests with 30 samples for each configuration is carried out. The tests are conducted at 0°, 30°, 45° and 90° orientation angles and at strain rates of 0.021/s and 85/s. The obtained results are evaluated statistically by means of probability distribution functions. An orthotropic elastic plastic material model is utilized for the numerical investigations. Monte Carlo Simulations with variations in macroscopic parameters are run to emulate the stochastic rupture behavior of the experiments. The author Nikolai Sygusch was Research Associate at the Institute of Mechanics and Materials, Working Group Kolling, TH Mittelhessen, Giessen and has been a Ph. D. student from 2015 until 2018 at the crash simulation at Opel Automobile GmbH, Rüsselsheim am Main. 
588 0 |a Online resource; title from digital title page (viewed on April 30, 2020). 
650 0 |a Polypropylene  |x Testing  |x Mathematical models. 
650 0 |a Glass fibers  |x Mathematical models. 
650 0 |a Motor vehicles  |x Materials  |x Testing  |x Mathematical models. 
650 7 |a Building materials.  |2 fast  |0 (OCoLC)fst00840723 
650 7 |a Glass fibers.  |2 fast  |0 (OCoLC)fst00943148 
903 |a HeVa 
929 |a oclccm 
999 f f |i 17d923ed-4ed0-5c7c-8ec8-22bb53f2be5b  |s f9ad55a8-f364-5d86-a729-ca607ecd7bdc 
928 |t Library of Congress classification  |a TA455.P55 S94 2020  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-658-27113-8  |z Springer Nature  |g ebooks  |i 12617286