Analysis and classification of EEG signals for brain-computer interfaces /

Saved in:
Bibliographic Details
Author / Creator:Paszkiel, Szczepan, author.
Imprint:Cham : Springer, [2020]
©2020
Description:1 online resource.
Language:English
Series:Studies in computational intelligence, 1860-949X ; volume 852
Studies in computational intelligence ; v. 852.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12601983
Hidden Bibliographic Details
ISBN:9783030305819
3030305813
9783030305802
3030305805
9783030305826
3030305821
9783030305833
303030583X
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed September 17, 2019).
Summary:This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore-Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain-computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain-computer technology and virtual reality technology.
Other form:Original 3030305805 9783030305802
Standard no.:10.1007/978-3-030-30581-9

MARC

LEADER 00000cam a2200000Ii 4500
001 12601983
005 20210813213023.0
006 m o d
007 cr cnu|||unuuu
008 190917s2020 sz ob 000 0 eng d
015 |a GBB9G0577  |2 bnb 
016 7 |a 019535761  |2 Uk 
019 |a 1121485536  |a 1122186381  |a 1156367305  |a 1162760284 
020 |a 9783030305819  |q (electronic bk.) 
020 |a 3030305813  |q (electronic bk.) 
020 |z 9783030305802 
020 |z 3030305805 
020 |a 9783030305826  |q (print) 
020 |a 3030305821 
020 |a 9783030305833  |q (print) 
020 |a 303030583X 
024 7 |a 10.1007/978-3-030-30581-9  |2 doi 
035 |a (OCoLC)1119720321  |z (OCoLC)1121485536  |z (OCoLC)1122186381  |z (OCoLC)1156367305  |z (OCoLC)1162760284 
035 9 |a (OCLCCM-CC)1119720321 
037 |a com.springer.onix.9783030305819  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d UKMGB  |d YDX  |d OCLCF  |d SFB  |d VT2 
049 |a MAIN 
050 4 |a QP360.7  |b .P37 2020eb 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
100 1 |a Paszkiel, Szczepan,  |e author. 
245 1 0 |a Analysis and classification of EEG signals for brain-computer interfaces /  |c Szczepan Paszkiel. 
264 1 |a Cham :  |b Springer,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in computational intelligence,  |x 1860-949X ;  |v volume 852 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 17, 2019). 
504 |a Includes bibliographical references. 
505 0 |a Chapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc. 
520 |a This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore-Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain-computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain-computer technology and virtual reality technology. 
650 0 |a Brain-computer interfaces.  |0 http://id.loc.gov/authorities/subjects/sh2007000197 
650 0 |a Electroencephalography.  |0 http://id.loc.gov/authorities/subjects/sh85042138 
650 7 |a Brain-computer interfaces.  |2 fast  |0 (OCoLC)fst01742078 
650 7 |a Electroencephalography.  |2 fast  |0 (OCoLC)fst00906445 
655 4 |a Electronic books. 
776 0 8 |c Original  |z 3030305805  |z 9783030305802  |w (OCoLC)1111783568 
830 0 |a Studies in computational intelligence ;  |v v. 852.  |0 http://id.loc.gov/authorities/names/no2005104439 
903 |a HeVa 
929 |a oclccm 
999 f f |i c32120b4-2922-5e08-abde-5847a0795970  |s 6aa61a45-0d4a-5f12-a30b-cd831e520052 
928 |t Library of Congress classification  |a QP360.7 .P37 2020eb  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-30581-9  |z Springer Nature  |g ebooks  |i 12617590