Towards user-centric intelligent network selection in 5G heterogeneous wireless networks : a reinforcement learning perspective /

Saved in:
Bibliographic Details
Imprint:Singapore : Springer, 2020.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12602462
Hidden Bibliographic Details
Other authors / contributors:Du, Zhiyong.
ISBN:9789811511202
9811511209
9789811511196
9811511195
Notes:Includes bibliographical references and index.
Print version record.
Summary:This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond.
Other form:Print version: Towards user-centric intelligent network selection in 5G heterogeneous wireless networks. Singapore : Springer, 2020 9811511195 9789811511196
Standard no.:10.1007/978-981-15-1

MARC

LEADER 00000cam a2200000Ia 4500
001 12602462
006 m o d
007 cr |n|||||||||
008 191110s2020 si ob 001 0 eng d
005 20240710205332.7
015 |a GBC044710  |2 bnb 
016 7 |a 019606692  |2 Uk 
019 |a 1127296409  |a 1129214479  |a 1130759513 
020 |a 9789811511202  |q (electronic bk.) 
020 |a 9811511209  |q (electronic bk.) 
020 |z 9789811511196 
020 |z 9811511195 
024 8 |a 10.1007/978-981-15-1 
035 |a (OCoLC)1127131726  |z (OCoLC)1127296409  |z (OCoLC)1129214479  |z (OCoLC)1130759513 
035 9 |a (OCLCCM-CC)1127131726 
037 |a com.springer.onix.9789811511202  |b Springer Nature 
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCF  |d ESU  |d OCLCQ  |d LQU  |d UPM  |d SFB  |d AU@  |d UKMGB  |d OCLCQ  |d SRU  |d UKAHL  |d VLB 
049 |a MAIN 
050 4 |a TK5103.25  |b .T69 2020eb 
245 0 0 |a Towards user-centric intelligent network selection in 5G heterogeneous wireless networks :  |b a reinforcement learning perspective /  |c Zhiyong Du, Bin Jiang, Qihui Wu, Yuhua Xu, Kun Xu. 
260 |a Singapore :  |b Springer,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Introduction -- Learning the Optimal Network with Handoff Constraint: MAB RL Based Network Selection -- Learning the Optimal Network with Context Awareness: Transfer RL Based Network Selection -- Meeting Dynamic User Demand with Transmission Cost Awareness: CT-MAB RL Based Network Selection -- Meeting Dynamic User Demand with Handoff Cost Awareness: MDP RL Based Network Handoff -- Matching Heterogeneous User Demands: Localized Cooperation Game and MARL based Network Selection -- Exploiting User Demand Diversity: QoE game and MARL Based Network Selection -- Future Work. 
520 |a This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond. 
650 0 |a 5G mobile communication systems.  |0 http://id.loc.gov/authorities/subjects/sh2019000281 
650 0 |a Wireless communication systems.  |0 http://id.loc.gov/authorities/subjects/sh92006740 
650 0 |a Reinforcement learning.  |0 http://id.loc.gov/authorities/subjects/sh92000704 
650 7 |a 5G mobile communication systems.  |2 fast  |0 (OCoLC)fst02009233 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
650 7 |a Wireless communication systems.  |2 fast  |0 (OCoLC)fst01176209 
655 0 |a Electronic books. 
655 4 |a Electronic books 
655 4 |a Electronic books. 
700 1 |a Du, Zhiyong. 
776 0 8 |i Print version:  |t Towards user-centric intelligent network selection in 5G heterogeneous wireless networks.  |d Singapore : Springer, 2020  |z 9811511195  |z 9789811511196  |w (OCoLC)1120692041 
903 |a HeVa 
929 |a oclccm 
999 f f |i ef7570c2-ca2f-56f9-b28d-51f8cd2b1485  |s 30a7c0d8-dbf8-5b1e-a39a-783662056138 
928 |t Library of Congress classification  |a TK5103.25 .T69 2020eb  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-15-1120-2  |z Springer Nature  |g ebooks  |i 12618068