Fractal dimensions of networks /

Saved in:
Bibliographic Details
Author / Creator:Rosenberg, Eric.
Imprint:Cham, Switzerland : Springer, [2020]
Description:1 online resource (xx, 524 pages)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12606583
Hidden Bibliographic Details
ISBN:303043169X
9783030431693
3030431681
9783030431686
Notes:Includes bibliographical references and index.
Description based on online resource; title from digital title page (viewed on August 13, 2020).
Summary:Current interest in fractal dimensions of networks is the result of more than a century of previous research on dimensions. Fractal Dimensions of Networks ties the theory and methods for computing fractal dimensions of networks to the classical theory of dimensions of geometric objects. The goal of the book is to provide a unified treatment of fractal dimensions of sets and networks. Since almost all of the major concepts in fractal dimensions originated in the study of sets, the book achieves this goal by first clearly presenting, with an abundance of examples and illustrations, the theory and algorithms for sets, and then showing how the theory and algorithms have been applied to networks. For example, the book presents the classical theory and algorithms for the box counting dimension for sets, and then presents the box counting dimension for networks. All the major fractal dimensions are studied, e.g., the correlation dimension, the information dimension, the Hausdorff dimension, the multifractal spectrum, as well as many lesser known dimensions. Algorithm descriptions are accompanied by worked examples, with many applications of the methods presented. · Presentation of a unified view of fractal dimensions and the relationship between computing these dimensions for geometric objects and computing them for networks · A historical view of the different dimensions, starting with Euclid, presented in a form that is not overly mathematical · Many applications of the methods are discussed in a broad range of fields: art, biology, cosmology, food processing, marine science, neurology, etc. · Many examples are provided to illustrate the computational methods · Includes exercises throughout, ranging in difficulty from simple to research level. --
Other form:Print version: 3030431681 9783030431686
Standard no.:10.1007/978-3-030-43169-3
10.1007/978-3-030-43

MARC

LEADER 00000cam a2200000Ii 4500
001 12606583
006 m o d
007 cr |n|||||||||
008 200729s2020 sz a ob 001 0 eng d
005 20240621201419.2
015 |a GBC0C3815  |2 bnb 
016 7 |a 019843611  |2 Uk 
019 |a 1178998026  |a 1181843502  |a 1182443509  |a 1182922582  |a 1183734571  |a 1183934388  |a 1190680516  |a 1193272468  |a 1195441964  |a 1196141225  |a 1196164794  |a 1197541288  |a 1197552072  |a 1197735682  |a 1198146824  |a 1198817679 
020 |a 303043169X  |q electronic book 
020 |a 9783030431693  |q (electronic bk.) 
020 |z 3030431681 
020 |z 9783030431686 
024 7 |a 10.1007/978-3-030-43169-3  |2 doi 
024 7 |a 10.1007/978-3-030-43 
035 |a (OCoLC)1178713077  |z (OCoLC)1178998026  |z (OCoLC)1181843502  |z (OCoLC)1182443509  |z (OCoLC)1182922582  |z (OCoLC)1183734571  |z (OCoLC)1183934388  |z (OCoLC)1190680516  |z (OCoLC)1193272468  |z (OCoLC)1195441964  |z (OCoLC)1196141225  |z (OCoLC)1196164794  |z (OCoLC)1197541288  |z (OCoLC)1197552072  |z (OCoLC)1197735682  |z (OCoLC)1198146824  |z (OCoLC)1198817679 
035 9 |a (OCLCCM-CC)1178713077 
037 |a com.springer.onix.9783030431693  |b Springer Nature 
040 |a YDX  |b eng  |e rda  |c YDX  |d DKU  |d OCLCO  |d GW5XE  |d YDXIT  |d EBLCP  |d LQU  |d UAB  |d N$T  |d SFB  |d UKMGB  |d OCLCF  |d UKAHL 
049 |a MAIN 
050 4 |a TK5105.5  |b .R67 2020 
072 7 |a UKN  |2 bicssc 
072 7 |a COM075000  |2 bisacsh 
072 7 |a UKN  |2 thema 
100 1 |a Rosenberg, Eric. 
245 1 0 |a Fractal dimensions of networks /  |c Eric Rosenberg. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2020] 
300 |a 1 online resource (xx, 524 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Introduction -- Networks : introductory material -- Fractals : introductory material -- Topological and box counting dimensions -- Hausdorff, similarity, and packing dimensions -- Computing the box counting dimension -- Network box counting dimensions -- Network box counting heuristics -- Correlation dimension -- Computing the correlation dimension -- Network correlation dimension -- Dimensions of infinite networks -- Similarity dimension of infinite networks -- Information dimension -- Network information dimension -- Generalized dimensions and multifractals -- Multifractal networks -- Generalized Hausdorf dimensions of networks -- Lacunarity -- Other dimensions -- Coarse graining and renormalization -- Other network dimensions -- Supplemental material. 
520 |a Current interest in fractal dimensions of networks is the result of more than a century of previous research on dimensions. Fractal Dimensions of Networks ties the theory and methods for computing fractal dimensions of networks to the classical theory of dimensions of geometric objects. The goal of the book is to provide a unified treatment of fractal dimensions of sets and networks. Since almost all of the major concepts in fractal dimensions originated in the study of sets, the book achieves this goal by first clearly presenting, with an abundance of examples and illustrations, the theory and algorithms for sets, and then showing how the theory and algorithms have been applied to networks. For example, the book presents the classical theory and algorithms for the box counting dimension for sets, and then presents the box counting dimension for networks. All the major fractal dimensions are studied, e.g., the correlation dimension, the information dimension, the Hausdorff dimension, the multifractal spectrum, as well as many lesser known dimensions. Algorithm descriptions are accompanied by worked examples, with many applications of the methods presented. · Presentation of a unified view of fractal dimensions and the relationship between computing these dimensions for geometric objects and computing them for networks · A historical view of the different dimensions, starting with Euclid, presented in a form that is not overly mathematical · Many applications of the methods are discussed in a broad range of fields: art, biology, cosmology, food processing, marine science, neurology, etc. · Many examples are provided to illustrate the computational methods · Includes exercises throughout, ranging in difficulty from simple to research level. --  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
588 |a Description based on online resource; title from digital title page (viewed on August 13, 2020). 
650 0 |a Computer networks  |x Mathematics. 
650 0 |a Fractals.  |0 http://id.loc.gov/authorities/subjects/sh85051147 
650 7 |a Computer networks  |x Mathematics  |2 fast  |0 (OCoLC)fst00872327 
650 7 |a Fractals  |2 fast  |0 (OCoLC)fst00933507 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |z 3030431681  |z 9783030431686  |w (OCoLC)1141933668 
903 |a HeVa 
929 |a oclccm 
999 f f |i 9147a8a4-7c00-59f4-aec0-a55bb2d164b8  |s 5b85c440-52f3-5a7e-aad4-568ad4e27f3c 
928 |t Library of Congress classification  |a TK5105.5 .R67 2020  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-43169-3  |z Springer Nature  |g ebooks  |i 12622191