Image fusion /

Saved in:
Bibliographic Details
Author / Creator:Xiao, Gang, author.
Imprint:Singapore : Springer ; Shanghai, China : Shanghai Jiao Tong University Press, [2020]
Description:1 online resource (415 pages)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12607383
Hidden Bibliographic Details
Other authors / contributors:Bavirisetti, Durga Prasad, author.
Liu, Gang, author.
Zhang, Xingchen, author.
ISBN:9789811548673
9811548676
9811548668
9789811548666
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Description based on online resource; title from digital title page (viewed on October 16, 2020).
Summary:This book systematically discusses the basic concepts, theories, research and latest trends in image fusion. It focuses on three image fusion categories - pixel, feature and decision - presenting various applications, such as medical imaging, remote sensing, night vision, robotics and autonomous vehicles. Further, it introduces readers to a new category: edge-preserving-based image fusion, and provides an overview of image fusion based on machine learning and deep learning. As such, it is a valuable resource for graduate students and scientists in the field of digital image processing and information fusion.
Other form:Print version: Xiao, Gang Image Fusion Singapore : Springer Singapore Pte. Limited,c2020 9789811548666
Standard no.:10.1007/978-981-15-4

MARC

LEADER 00000cam a2200000Ii 4500
001 12607383
006 m o d
007 cr cnu---unuuu
008 200905s2020 si ob 000 0 eng d
005 20240705200921.9
015 |a GBC0G5648  |2 bnb 
016 7 |a 019933912  |2 Uk 
019 |a 1192490233  |a 1197838589  |a 1198391898  |a 1203985044 
020 |a 9789811548673  |q electronic book 
020 |a 9811548676  |q electronic book 
020 |z 9811548668 
020 |z 9789811548666 
024 8 |a 10.1007/978-981-15-4 
035 |a (OCoLC)1193129606  |z (OCoLC)1192490233  |z (OCoLC)1197838589  |z (OCoLC)1198391898  |z (OCoLC)1203985044 
035 9 |a (OCLCCM-CC)1193129606 
037 |b Springer 
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d YDX  |d LQU  |d UPM  |d YDXIT  |d GW5XE  |d MERER  |d OCLCF  |d NLW  |d DCT  |d UKMGB  |d UKAHL 
049 |a MAIN 
050 4 |a TA1634  |b .X53 2020 
100 1 |a Xiao, Gang,  |e author. 
245 1 0 |a Image fusion /  |c Gang Xiao, Durga Prasad Bavirisetti, Gang Liu, Xingchen Zhang. 
264 1 |a Singapore :  |b Springer ;  |c Shanghai, China :  |b Shanghai Jiao Tong University Press,  |c [2020] 
300 |a 1 online resource (415 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
504 |a Includes bibliographical references. 
520 |a This book systematically discusses the basic concepts, theories, research and latest trends in image fusion. It focuses on three image fusion categories - pixel, feature and decision - presenting various applications, such as medical imaging, remote sensing, night vision, robotics and autonomous vehicles. Further, it introduces readers to a new category: edge-preserving-based image fusion, and provides an overview of image fusion based on machine learning and deep learning. As such, it is a valuable resource for graduate students and scientists in the field of digital image processing and information fusion. 
588 |a Description based on online resource; title from digital title page (viewed on October 16, 2020). 
505 0 |a Intro -- Preface -- Acknowledgments -- Contents -- About the Authors -- Part I: Image Fusion Theories -- Chapter 1: Introduction to Image Fusion -- 1.1 History and Development -- 1.1.1 History -- 1.1.2 Development -- 1.2 Image Fusion Fundamentals -- 1.2.1 Necessity to Combine Information of Images -- 1.2.2 Definition of Image Fusion -- 1.2.3 Image Fusion Objective -- 1.3 Categorization -- 1.4 Fundamental Steps of an Image Fusion System -- 1.5 Types of Image Fusion Systems -- 1.6 Applications -- 1.7 Summary and Outline of the Book -- References -- Chapter 2: Pixel-Level Image Fusion 
505 8 |a 2.1 Introduction -- 2.1.1 Single-Scale Image Fusion -- 2.1.2 Multi-Scale Image Fusion -- 2.1.2.1 Pyramid-Based Fusion -- 2.1.2.2 Wavelet Transform-Based Fusion -- 2.1.2.3 Filtering-Based Fusion -- 2.2 Pyramid Image Fusion Method Based on Integrated Edge and Texture Information -- 2.2.1 Background -- 2.2.2 Fusion Framework -- 2.2.3 Pyramid Image Fusion of Edge and Texture Information-Specific Steps -- 2.2.4 Beneficial Effects -- 2.3 Image Fusion Method Based on the Expected Maximum and Discrete Wavelet Frames -- 2.3.1 Introduction -- 2.3.2 Discrete Wavelet Frame Multi-Resolution Transform 
505 8 |a 2.3.3 Basic Structure of the New Fusion Scheme -- 2.3.4 Fusion of the Low-Frequency Band Using the EM Algorithm -- 2.3.5 The Selection of the High-Frequency Band Using the Informative Importance Measure -- 2.3.6 Computer Simulation -- 2.3.7 Conclusions -- 2.4 Image Fusion Method Based on Optimal Wavelet Filter Banks -- 2.4.1 Introduction -- 2.4.2 The Generic Multi-Resolution Image Fusion Algorithm -- 2.4.3 Design Criteria of Filter Banks -- 2.4.4 Optimization Design of Filter Bank for Image Fusion -- 2.4.5 Experiments -- 2.4.6 Conclusion 
505 8 |a 2.5 Anisotropic Diffusion-Based Fusion of Infrared and Visible Sensor Images (ADF) -- 2.5.1 Anisotropic Diffusion -- 2.5.2 Anisotropic Diffusion-Based Fusion Method (ADF) -- 2.5.2.1 Extracting Base and Detail Layers -- 2.5.2.2 Detail Layer Fusion Based on KL Transform -- 2.5.2.3 Base Layer Fusion -- 2.5.2.4 Super Position of Final Detail and Base Layers -- 2.5.3 Experimental Setup -- 2.5.3.1 Image Database -- 2.5.3.2 Fusion Metrics -- 2.5.3.3 Methods for Comparison -- 2.5.3.4 Effect of Free Parameters on the ADF Method -- 2.5.4 Results and Analysis -- 2.5.4.1 Qualitative Analysis 
505 8 |a 2.5.4.2 Quantitative Analysis -- 2.5.4.3 Computational Time -- 2.6 Two-Scale Image Fusion of Infrared and Visible Images Using Saliency Detection -- 2.6.1 Two-Scale Image Fusion (TIF) -- 2.6.1.1 Two-Scale Image Decomposition -- 2.6.1.2 Visual Saliency Detection -- 2.6.1.3 Weight Map Construction -- 2.6.1.4 Detail Layer Fusion -- 2.6.1.5 Base Layer Fusion -- 2.6.1.6 Two-Scale Image Reconstruction -- 2.6.1.7 Color Image Fusion -- 2.6.2 Experimental Setup -- 2.6.2.1 Image Database -- 2.6.2.2 Other Methods for Comparison -- 2.6.2.3 Objective Fusion Metrics -- 2.6.2.4 Parameter Analysis 
650 0 |a Optical data processing.  |0 http://id.loc.gov/authorities/subjects/sh85095143 
650 0 |a Multispectral imaging.  |0 http://id.loc.gov/authorities/subjects/sh85088388 
650 0 |a Computer vision.  |0 http://id.loc.gov/authorities/subjects/sh85029549 
650 7 |a Image processing.  |2 bicssc 
650 7 |a Computers  |x Computer Graphics.  |2 bisacsh 
650 7 |a Computer vision.  |2 fast  |0 (OCoLC)fst00872687 
650 7 |a Multispectral imaging.  |2 fast  |0 (OCoLC)fst01029098 
650 7 |a Optical data processing.  |2 fast  |0 (OCoLC)fst01046675 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Bavirisetti, Durga Prasad,  |e author. 
700 1 |a Liu, Gang,  |e author. 
700 1 |a Zhang, Xingchen,  |e author. 
776 0 8 |i Print version:  |a Xiao, Gang  |t Image Fusion  |d Singapore : Springer Singapore Pte. Limited,c2020  |z 9789811548666 
903 |a HeVa 
929 |a oclccm 
999 f f |i a6504ce8-14e3-5ed7-979a-927e4c6c6a4c  |s e78ad5b7-f3a2-5d52-a90f-e812d5ba66b5 
928 |t Library of Congress classification  |a TA1634 .X53 2020  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-15-4867-3  |z Springer Nature  |g ebooks  |i 12622991