Image fusion /
Saved in:
Author / Creator: | Xiao, Gang, author. |
---|---|
Imprint: | Singapore : Springer ; Shanghai, China : Shanghai Jiao Tong University Press, [2020] |
Description: | 1 online resource (415 pages) |
Language: | English |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/12607383 |
Table of Contents:
- Intro
- Preface
- Acknowledgments
- Contents
- About the Authors
- Part I: Image Fusion Theories
- Chapter 1: Introduction to Image Fusion
- 1.1 History and Development
- 1.1.1 History
- 1.1.2 Development
- 1.2 Image Fusion Fundamentals
- 1.2.1 Necessity to Combine Information of Images
- 1.2.2 Definition of Image Fusion
- 1.2.3 Image Fusion Objective
- 1.3 Categorization
- 1.4 Fundamental Steps of an Image Fusion System
- 1.5 Types of Image Fusion Systems
- 1.6 Applications
- 1.7 Summary and Outline of the Book
- References
- Chapter 2: Pixel-Level Image Fusion
- 2.1 Introduction
- 2.1.1 Single-Scale Image Fusion
- 2.1.2 Multi-Scale Image Fusion
- 2.1.2.1 Pyramid-Based Fusion
- 2.1.2.2 Wavelet Transform-Based Fusion
- 2.1.2.3 Filtering-Based Fusion
- 2.2 Pyramid Image Fusion Method Based on Integrated Edge and Texture Information
- 2.2.1 Background
- 2.2.2 Fusion Framework
- 2.2.3 Pyramid Image Fusion of Edge and Texture Information-Specific Steps
- 2.2.4 Beneficial Effects
- 2.3 Image Fusion Method Based on the Expected Maximum and Discrete Wavelet Frames
- 2.3.1 Introduction
- 2.3.2 Discrete Wavelet Frame Multi-Resolution Transform
- 2.3.3 Basic Structure of the New Fusion Scheme
- 2.3.4 Fusion of the Low-Frequency Band Using the EM Algorithm
- 2.3.5 The Selection of the High-Frequency Band Using the Informative Importance Measure
- 2.3.6 Computer Simulation
- 2.3.7 Conclusions
- 2.4 Image Fusion Method Based on Optimal Wavelet Filter Banks
- 2.4.1 Introduction
- 2.4.2 The Generic Multi-Resolution Image Fusion Algorithm
- 2.4.3 Design Criteria of Filter Banks
- 2.4.4 Optimization Design of Filter Bank for Image Fusion
- 2.4.5 Experiments
- 2.4.6 Conclusion
- 2.5 Anisotropic Diffusion-Based Fusion of Infrared and Visible Sensor Images (ADF)
- 2.5.1 Anisotropic Diffusion
- 2.5.2 Anisotropic Diffusion-Based Fusion Method (ADF)
- 2.5.2.1 Extracting Base and Detail Layers
- 2.5.2.2 Detail Layer Fusion Based on KL Transform
- 2.5.2.3 Base Layer Fusion
- 2.5.2.4 Super Position of Final Detail and Base Layers
- 2.5.3 Experimental Setup
- 2.5.3.1 Image Database
- 2.5.3.2 Fusion Metrics
- 2.5.3.3 Methods for Comparison
- 2.5.3.4 Effect of Free Parameters on the ADF Method
- 2.5.4 Results and Analysis
- 2.5.4.1 Qualitative Analysis
- 2.5.4.2 Quantitative Analysis
- 2.5.4.3 Computational Time
- 2.6 Two-Scale Image Fusion of Infrared and Visible Images Using Saliency Detection
- 2.6.1 Two-Scale Image Fusion (TIF)
- 2.6.1.1 Two-Scale Image Decomposition
- 2.6.1.2 Visual Saliency Detection
- 2.6.1.3 Weight Map Construction
- 2.6.1.4 Detail Layer Fusion
- 2.6.1.5 Base Layer Fusion
- 2.6.1.6 Two-Scale Image Reconstruction
- 2.6.1.7 Color Image Fusion
- 2.6.2 Experimental Setup
- 2.6.2.1 Image Database
- 2.6.2.2 Other Methods for Comparison
- 2.6.2.3 Objective Fusion Metrics
- 2.6.2.4 Parameter Analysis