Homotopy theory with Bornological coarse spaces /

Saved in:
Bibliographic Details
Author / Creator:Bunke, Ulrich, 1963-
Imprint:Cham : Springer, 2020.
Description:1 online resource
Language:English
Series:Lecture notes in mathematics ; v. 2269
Lecture notes in mathematics (Springer-Verlag) ; 2269.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12607425
Hidden Bibliographic Details
Other authors / contributors:Engel, Alexander.
ISBN:9783030513351
3030513351
3030513343
9783030513344
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Summary:Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories. The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories.
Other form:Original 3030513343 9783030513344
Standard no.:10.1007/978-3-030-51335-1
10.1007/978-3-030-51

MARC

LEADER 00000cam a2200000Ia 4500
001 12607425
005 20210813213023.0
006 m o d
007 cr |n|||||||||
008 200909s2020 sz ob 001 0 eng d
015 |a GBC0G5667  |2 bnb 
016 7 |a 019934041  |2 Uk 
019 |a 1195446728  |a 1195458494  |a 1197837714  |a 1198396197  |a 1198729675  |a 1200577897 
020 |a 9783030513351  |q (electronic bk.) 
020 |a 3030513351  |q (electronic bk.) 
020 |z 3030513343 
020 |z 9783030513344 
024 7 |a 10.1007/978-3-030-51335-1  |2 doi 
024 7 |a 10.1007/978-3-030-51 
035 |a (OCoLC)1193332693  |z (OCoLC)1195446728  |z (OCoLC)1195458494  |z (OCoLC)1197837714  |z (OCoLC)1198396197  |z (OCoLC)1198729675  |z (OCoLC)1200577897 
035 9 |a (OCLCCM-CC)1193332693 
037 |a com.springer.onix.9783030513351  |b Springer Nature 
040 |a YDX  |b eng  |c YDX  |d GW5XE  |d EBLCP  |d UX0  |d LQU  |d UPM  |d SFB  |d OCLCF  |d NLW  |d UKMGB  |d UKAHL 
049 |a MAIN 
050 4 |a QA612.7 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBPD  |2 thema 
100 1 |a Bunke, Ulrich,  |d 1963-  |0 http://id.loc.gov/authorities/names/n95041953 
245 1 0 |a Homotopy theory with Bornological coarse spaces /  |c Ulrich Bunke, Alexander Engel. 
260 |a Cham :  |b Springer,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture notes in mathematics ;  |v v. 2269 
504 |a Includes bibliographical references and index. 
505 0 |a Intro -- Contents -- 1 Introduction -- Part I Motivic Coarse Spaces and Spectra -- 2 Bornological Coarse Spaces -- 2.1 Basic Definitions -- 2.2 Examples -- 2.3 Categorical Properties of BornCoarse -- 3 Motivic Coarse Spaces -- 3.1 Descent -- 3.2 Coarse Equivalences -- 3.3 Flasque Spaces -- 3.4 u-Continuity and Motivic Coarse Spaces -- 3.5 Coarse Excision and Further Properties -- 4 Motivic Coarse Spectra -- 4.1 Stabilization -- 4.2 Further Properties of Yo-s -- 4.3 Homotopy Invariance -- 4.4 Axioms for a Coarse Homology Theory -- 5 Merging Coarse and Uniform Structures 
505 8 |a 5.1 The Hybrid Structure -- 5.2 Decomposition Theorem -- 5.2.1 Uniform Decompositions and Statement of the Theorem -- 5.2.2 Proof of the Decomposition Theorem -- 5.2.3 Excisiveness of the Cone-at-Infinity -- 5.3 Homotopy Theorem -- 5.3.1 Statement of the Theorem -- 5.3.2 Proof of the Homotopy Theorem -- 5.3.3 Uniform Homotopies and the Cone Functors -- 5.4 Flasque Hybrid Spaces -- 5.5 Decomposition of Simplicial Complexes -- 5.5.1 Metrics on Simplicial Complexes -- 5.5.2 Decomposing Simplicial Complexes -- 5.6 Flasqueness of the Coarsening Space -- 5.6.1 Construction of the Coarsening Space 
505 8 |a 5.6.2 Flasqueness for the C0-Structure -- 5.6.3 Flasqueness for the Hybrid Structure -- 5.7 The Motivic Coarse Spectra of Simplicial Complexes and Coarsening Spaces -- Part II Coarse and Locally Finite Homology Theories -- 6 First Examples and Comparison of Coarse Homology Theories -- 6.1 Forcing u-Continuity -- 6.2 Additivity and Coproducts -- 6.2.1 Additivity -- 6.2.2 Coproducts -- 6.3 Coarse Ordinary Homology -- 6.4 Coarsification of Stable Homotopy -- 6.4.1 Rips Complexes and a Coarsification of Stable Homotopy -- 6.4.2 Proof of Theorem 6.32 
505 8 |a 6.4.3 Further Properties of the Functor Q and Generalizations -- 6.5 Comparison of Coarse Homology Theories -- 7 Locally Finite Homology Theories and Coarsification -- 7.1 Locally Finite Homology Theories -- 7.1.1 Topological Bornological Spaces -- 7.1.2 Definition of Locally Finite Homology Theories -- 7.1.3 Additivity -- 7.1.4 Construction of Locally Finite Homology Theories -- 7.1.5 Classification of Locally Finite Homology Theories -- 7.2 Coarsification of Locally Finite Theories -- 7.3 Analytic Locally Finite K-Homology -- 7.3.1 Extending Functors from Locally Compact Spaces to TopBorn 
505 8 |a 7.3.2 Cohomology for Cstar-Algebras -- 7.3.3 Locally Finite Homology Theories from Cohomology Theories for Cstar-Algebras -- 7.4 Coarsification Spaces -- 8 Coarse K-Homology -- 8.1 X-Controlled Hilbert Spaces -- 8.2 Ample X-Controlled Hilbert Spaces -- 8.3 Roe Algebras -- 8.4 K-Theory of C*-Algebras -- 8.5 C*-Categories and Their K-Theory -- 8.5.1 Definition of Cstar-Categories -- 8.5.2 From Cstar-Categories to Cstar-Algebras and K-Theory -- 8.5.3 K-Theory Preserves Filtered Colimits -- 8.5.4 K-Theory Preserves Unitary Equivalences -- 8.5.5 Exactness of K-Theory -- 8.5.6 Additivity of K-Theory 
520 |a Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories. The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories. 
650 0 |a Homotopy theory.  |0 http://id.loc.gov/authorities/subjects/sh85061803 
650 0 |a Bornological spaces.  |0 http://id.loc.gov/authorities/subjects/sh85015868 
650 7 |a Geometry.  |2 bicssc 
650 7 |a Algebraic topology.  |2 bicssc 
650 7 |a Mathematics  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Mathematics  |x Topology.  |2 bisacsh 
650 7 |a Mathematics  |x Algebra  |x Abstract.  |2 bisacsh 
650 7 |a Bornological spaces.  |2 fast  |0 (OCoLC)fst00836700 
650 7 |a Homotopy theory.  |2 fast  |0 (OCoLC)fst00959852 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Engel, Alexander.  |0 http://id.loc.gov/authorities/names/no2009111935 
776 0 8 |c Original  |z 3030513343  |z 9783030513344  |w (OCoLC)1155591917 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 2269.  |0 http://id.loc.gov/authorities/names/n42015165 
903 |a HeVa 
929 |a oclccm 
999 f f |i 25dda3ea-9297-5047-8f58-b7f2f9fb1ec8  |s 2f357666-c5f8-53fb-8008-678259620c15 
928 |t Library of Congress classification  |a QA612.7  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-51335-1  |z Springer Nature  |g ebooks  |i 12623033