Elliptic quantum groups : representations and related geometry /

Saved in:
Bibliographic Details
Author / Creator:Konno, Hitoshi, author.
Imprint:Singapore : Springer, [2020]
Description:1 online resource.
Language:English
Series:SpringerBriefs in Mathematical Physics ; volume 37
SpringerBriefs in mathematical physics ; v. 37.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12607602
Hidden Bibliographic Details
ISBN:9789811573873
9811573875
9811573867
9789811573866
Notes:Includes bibliographical references.
Description based on online resource; title from digital title page (viewed on November 05, 2020).
Summary:This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation. Based on research by the author and his collaborators, the book presents a comprehensive survey on the subject including a brief history of formulations and applications, a detailed formulation of the elliptic quantum group in the Drinfeld realization, explicit construction of both finite and infinite-dimensional representations, and a construction of the vertex operators as intertwining operators of these representations. The vertex operators are important objects in representation theory of quantum groups. In this book, they are used to derive the elliptic q-KZ equations and their elliptic hypergeometric integral solutions. In particular, the so-called elliptic weight functions appear in such solutions. The authors recent study showed that these elliptic weight functions are identified with Okounkovs elliptic stable envelopes for certain equivariant elliptic cohomology and play an important role to construct geometric representations of elliptic quantum groups. Okounkovs geometric approach to quantum integrable systems is a rapidly growing topic in mathematical physics related to the Bethe ansatz, the Alday-Gaiotto-Tachikawa correspondence between 4D SUSY gauge theories and the CFTs, and the Nekrasov-Shatashvili correspondences between quantum integrable systems and quantum cohomology. To invite the reader to such topics is one of the aims of this book.
Other form:Print version: 9811573867 9789811573866
Standard no.:10.1007/978-981-15-7
10.1007/978-981-15-7387-3

MARC

LEADER 00000cam a2200000Ii 4500
001 12607602
005 20210813213023.0
006 m o d
007 cr cnu---unuuu
008 200920s2020 si ob 000 0 eng d
015 |a GBC0H8333  |2 bnb 
016 7 |a 019941844  |2 Uk 
019 |a 1197565100  |a 1197840193  |a 1198388715  |a 1202482776  |a 1204052285 
020 |a 9789811573873  |q (electronic bk.) 
020 |a 9811573875  |q (electronic bk.) 
020 |z 9811573867 
020 |z 9789811573866 
024 8 |a 10.1007/978-981-15-7 
024 7 |a 10.1007/978-981-15-7387-3  |2 doi 
035 |a (OCoLC)1196197938  |z (OCoLC)1197565100  |z (OCoLC)1197840193  |z (OCoLC)1198388715  |z (OCoLC)1202482776  |z (OCoLC)1204052285 
035 9 |a (OCLCCM-CC)1196197938 
037 |a com.springer.onix.9789811573873  |b Springer Nature 
040 |a YDX  |b eng  |e rda  |c YDX  |d EBLCP  |d LQU  |d UPM  |d SFB  |d OCLCF  |d YDXIT  |d NLW  |d GW5XE  |d ERF  |d UKAHL  |d N$T  |d OCLCO  |d UKMGB  |d OCL 
049 |a MAIN 
050 4 |a QC174.17.G7  |b K66 2020 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
100 1 |a Konno, Hitoshi,  |e author.  |0 http://id.loc.gov/authorities/names/no2018149401 
245 1 0 |a Elliptic quantum groups :  |b representations and related geometry /  |c Hitoshi Konno. 
264 1 |a Singapore :  |b Springer,  |c [2020] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Mathematical Physics ;  |v volume 37 
504 |a Includes bibliographical references. 
505 0 |a Preface -- Acknowledgements -- Chapter 1: Introduction -- Chapter 2: Elliptic Quantum Group -- Chapter 3: The H-Hopf Algebroid Structure of -- Chapter 4: Representations of -- Chapter 5: The Vertex Operators -- Chapter 6: Elliptic Weight Functions -- Chapter 7: Tensor Product Representation -- Chapter 8: Elliptic q-KZ Equation -- Chapter 9: Related Geometry -- Appendix A -- Appendix B -- Appendix C -- Appendix D -- Appendix E -- References. 
520 |a This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation. Based on research by the author and his collaborators, the book presents a comprehensive survey on the subject including a brief history of formulations and applications, a detailed formulation of the elliptic quantum group in the Drinfeld realization, explicit construction of both finite and infinite-dimensional representations, and a construction of the vertex operators as intertwining operators of these representations. The vertex operators are important objects in representation theory of quantum groups. In this book, they are used to derive the elliptic q-KZ equations and their elliptic hypergeometric integral solutions. In particular, the so-called elliptic weight functions appear in such solutions. The authors recent study showed that these elliptic weight functions are identified with Okounkovs elliptic stable envelopes for certain equivariant elliptic cohomology and play an important role to construct geometric representations of elliptic quantum groups. Okounkovs geometric approach to quantum integrable systems is a rapidly growing topic in mathematical physics related to the Bethe ansatz, the Alday-Gaiotto-Tachikawa correspondence between 4D SUSY gauge theories and the CFTs, and the Nekrasov-Shatashvili correspondences between quantum integrable systems and quantum cohomology. To invite the reader to such topics is one of the aims of this book. 
588 |a Description based on online resource; title from digital title page (viewed on November 05, 2020). 
650 0 |a Quantum groups.  |0 http://id.loc.gov/authorities/subjects/sh90005801 
650 0 |a Elliptic functions.  |0 http://id.loc.gov/authorities/subjects/sh85052336 
650 7 |a Groups & group theory.  |2 bicssc 
650 7 |a Algebra.  |2 bicssc 
650 7 |a Mathematical modelling.  |2 bicssc 
650 7 |a Mathematical physics.  |2 bicssc 
650 7 |a Mathematics  |x Algebra  |x Abstract.  |2 bisacsh 
650 7 |a Mathematics  |x Applied.  |2 bisacsh 
650 7 |a Science  |x Mathematical Physics.  |2 bisacsh 
650 7 |a Quantum groups.  |2 fast  |0 (OCoLC)fst01085113 
650 7 |a Elliptic functions.  |2 fast  |0 (OCoLC)fst00908173 
650 7 |a Algebra.  |2 fast  |0 (OCoLC)fst00804885 
650 7 |a Group theory.  |2 fast  |0 (OCoLC)fst00948521 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Ordered algebraic structures.  |2 fast  |0 (OCoLC)fst01047389 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |z 9811573867  |z 9789811573866  |w (OCoLC)1160578198 
830 0 |a SpringerBriefs in mathematical physics ;  |v v. 37.  |0 http://id.loc.gov/authorities/names/no2014125102 
903 |a HeVa 
929 |a oclccm 
999 f f |i 0a9a059d-f80c-55fc-988e-7b7a2b50a9a7  |s aec20b31-584d-5acd-9e26-67205b937dd1 
928 |t Library of Congress classification  |a QC174.17.G7 K66 2020  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-15-7387-3  |z Springer Nature  |g ebooks  |i 12623210