Stereoscopic image quality assessment /

Saved in:
Bibliographic Details
Author / Creator:Ding, Yong, 1974- author.
Imprint:[Hangzhou, China] : Zhejiang University Press ; Singapore : Springer, [2020]
Description:1 online resource (ix, 169 pages) : illustrations.
Language:English
Series:Advanced topics in science and technology in China ; volume 60
Advanced topics in science and technology in China ; vol. 60.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12608087
Hidden Bibliographic Details
Other authors / contributors:Sun, Guangming, author.
ISBN:9789811577642
9811577641
9789811577635
9811577633
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Summary:This book provides a comprehensive review of all aspects relating to visual quality assessment for stereoscopic images, including statistical mathematics, stereo vision and deep learning. It covers the fundamentals of stereoscopic image quality assessment (SIQA), the relevant engineering problems and research significance, and also offers an overview of the significant advances in visual quality assessment for stereoscopic images, discussing and analyzing the current state-of-the-art in SIQA algorithms, the latest challenges and research directions as well as novel models and paradigms. In addition, a large number of vivid figures and formulas help readers gain a deeper understanding of the foundation and new applications of objective stereoscopic image quality assessment technologies. Reviewing the latest advances, challenges and trends in stereoscopic image quality assessment, this book is a valuable resource for researchers, engineers and graduate students working in related fields, including imaging, displaying and image processing, especially those interested in SIQA research.
Other form:Original 9811577633 9789811577635
Standard no.:10.1007/978-981-15-7764-2

MARC

LEADER 00000cam a2200000Ii 4500
001 12608087
005 20210813213023.0
006 m o d
007 cr |n|||||||||
008 201025s2020 cc a ob 000 0 eng d
019 |a 1204136058  |a 1224379714  |a 1225892993  |a 1229928950  |a 1229942243 
020 |a 9789811577642  |q (electronic bk.) 
020 |a 9811577641  |q (electronic bk.) 
020 |z 9789811577635  |q (print) 
020 |z 9811577633 
024 7 |a 10.1007/978-981-15-7764-2  |2 doi 
035 |a (OCoLC)1201472682  |z (OCoLC)1204136058  |z (OCoLC)1224379714  |z (OCoLC)1225892993  |z (OCoLC)1229928950  |z (OCoLC)1229942243 
035 9 |a (OCLCCM-CC)1201472682 
037 |b Springer 
040 |a YDX  |b eng  |e rda  |c YDX  |d EBLCP  |d SFB  |d UKAHL  |d OCLCF  |d DCT  |d ERF  |d EMU  |d OCLCO  |d YDXIT  |d GW5XE  |d OCL  |d OCLCO 
049 |a MAIN 
050 4 |a TA1637  |b .D56 2020 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
100 1 |a Ding, Yong,  |d 1974-  |e author.  |0 http://id.loc.gov/authorities/names/no2018122325 
245 1 0 |a Stereoscopic image quality assessment /  |c Yong Ding, Guangming Sun. 
264 1 |a [Hangzhou, China] :  |b Zhejiang University Press ;  |a Singapore :  |b Springer,  |c [2020] 
300 |a 1 online resource (ix, 169 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced topics in science and technology in China ;  |v volume 60 
504 |a Includes bibliographical references. 
505 0 |a Introduction -- Basic of 2D Image Quality Assessment -- The Difference Between 2D IQA and 3D IQA -- Stereoscopic Image Quality Assessment Based on 2D IQA Models -- Stereoscopic Image Quality Assessment Based on Binocular Vision -- Learning Perceptual Quality of Stereopsis from Human Visual Properties -- Stereoscopic Image Quality Assessment Based on Deep Convolutional Neural Models -- Summary and Future Directions. 
520 |a This book provides a comprehensive review of all aspects relating to visual quality assessment for stereoscopic images, including statistical mathematics, stereo vision and deep learning. It covers the fundamentals of stereoscopic image quality assessment (SIQA), the relevant engineering problems and research significance, and also offers an overview of the significant advances in visual quality assessment for stereoscopic images, discussing and analyzing the current state-of-the-art in SIQA algorithms, the latest challenges and research directions as well as novel models and paradigms. In addition, a large number of vivid figures and formulas help readers gain a deeper understanding of the foundation and new applications of objective stereoscopic image quality assessment technologies. Reviewing the latest advances, challenges and trends in stereoscopic image quality assessment, this book is a valuable resource for researchers, engineers and graduate students working in related fields, including imaging, displaying and image processing, especially those interested in SIQA research. 
650 0 |a Image processing.  |0 http://id.loc.gov/authorities/subjects/sh85064446 
650 0 |a Multidimensional spectroscopy.  |0 http://id.loc.gov/authorities/subjects/sh2020006282 
650 0 |a Optical data processing.  |0 http://id.loc.gov/authorities/subjects/sh85095143 
650 0 |a Computer vision.  |0 http://id.loc.gov/authorities/subjects/sh85029549 
650 7 |a Multidimensional spectroscopy.  |2 fast  |0 (OCoLC)fst02021151 
650 7 |a Computer vision.  |2 fast  |0 (OCoLC)fst00872687 
650 7 |a Image processing.  |2 fast  |0 (OCoLC)fst00967501 
650 7 |a Optical data processing.  |2 fast  |0 (OCoLC)fst01046675 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
700 1 |a Sun, Guangming,  |e author. 
776 0 8 |c Original  |z 9811577633  |z 9789811577635  |w (OCoLC)1164496423 
830 0 |a Advanced topics in science and technology in China ;  |v vol. 60.  |0 http://id.loc.gov/authorities/names/n2008184587 
903 |a HeVa 
929 |a oclccm 
999 f f |i 43543b39-4f39-563d-bea2-8072a001c9c7  |s 6de7d1c3-ca94-5fac-9712-b0277dc64b80 
928 |t Library of Congress classification  |a TA1637 .D56 2020  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-15-7764-2  |z Springer Nature  |g ebooks  |i 12623695