Multivariate public key cryptosystems /

Saved in:
Bibliographic Details
Author / Creator:Ding, Jintai, author.
Edition:Second edition.
Imprint:New York, NY : Springer, [2020]
Description:1 online resource (269 p.).
Language:English
Series:Advances in Information Security ; volume 80
Advances in information security ; v. 80.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12608352
Hidden Bibliographic Details
Other authors / contributors:Petzoldt, Albrecht, author.
Schmidt, Dieter S., author.
ISBN:9781071609873
1071609874
1071609858
9781071609859
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Description based on online resource; title from digital title page (viewed on November 25, 2020).
Summary:This book discusses the current research concerning public key cryptosystems. It begins with an introduction to the basic concepts of multivariate cryptography and the history of this field. The authors provide a detailed description and security analysis of the most important multivariate public key schemes, including the four multivariate signature schemes participating as second round candidates in the NIST standardization process for post-quantum cryptosystems. Furthermore, this book covers the Simple Matrix encryption scheme, which is currently the most promising multivariate public key encryption scheme. This book also covers the current state of security analysis methods for Multivariate Public Key Cryptosystems including the algorithms and theory of solving systems of multivariate polynomial equations over finite fields. Through the book's website, interested readers can find source code to the algorithms handled in this book. In 1994, Dr. Peter Shor from Bell Laboratories proposed a quantum algorithm solving the Integer Factorization and the Discrete Logarithm problem in polynomial time, thus making all of the currently used public key cryptosystems, such as RSA and ECC insecure. Therefore, there is an urgent need for alternative public key schemes which are resistant against quantum computer attacks. Researchers worldwide, as well as companies and governmental organizations have put a tremendous effort into the development of post-quantum public key cryptosystems to meet this challenge. One of the most promising candidates for this are Multivariate Public Key Cryptosystems (MPKCs). The public key of an MPKC is a set of multivariate polynomials over a small finite field. Especially for digital signatures, numerous well-studied multivariate schemes offering very short signatures and high efficiency exist.
Other form:Print version: Ding, Jintai Multivariate Public Key Cryptosystems New York, NY : Springer,c2020 9781071609859
Standard no.:10.1007/978-1-0716-0987-3

MARC

LEADER 00000cam a2200000Ii 4500
001 12608352
005 20210813213023.0
006 m o d
007 cr cnu---unuuu
008 201031s2020 nyu ob 001 0 eng d
015 |a GBC0J0945  |2 bnb 
016 7 |a 019968872  |2 Uk 
019 |a 1198558904  |a 1226245109 
020 |a 9781071609873  |q (electronic bk.) 
020 |a 1071609874  |q (electronic bk.) 
020 |z 1071609858 
020 |z 9781071609859 
024 7 |a 10.1007/978-1-0716-0987-3  |2 doi 
035 |a (OCoLC)1202467700  |z (OCoLC)1198558904  |z (OCoLC)1226245109 
035 9 |a (OCLCCM-CC)1202467700 
037 |a com.springer.onix.9781071609873  |b Springer Nature 
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d YDX  |d YDXIT  |d OCLCO  |d EBLCP  |d UKAHL  |d OCLCF  |d GW5XE  |d S2H  |d UKMGB 
049 |a MAIN 
050 4 |a QA76.9.A25  |b D5635 2020 
072 7 |a COM053000.  |2 bisacsh 
072 7 |a GPJ.  |2 bicssc 
072 7 |a GPJ.  |2 thema 
072 7 |a URY.  |2 thema 
100 1 |a Ding, Jintai,  |e author.  |0 http://id.loc.gov/authorities/names/no2007008897 
245 1 0 |a Multivariate public key cryptosystems /  |c Jintai Ding, Albrecht Petzoldt, Dieter S. Schmidt. 
250 |a Second edition. 
264 1 |a New York, NY :  |b Springer,  |c [2020] 
300 |a 1 online resource (269 p.). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Information Security ;  |v volume 80 
504 |a Includes bibliographical references and index. 
520 |a This book discusses the current research concerning public key cryptosystems. It begins with an introduction to the basic concepts of multivariate cryptography and the history of this field. The authors provide a detailed description and security analysis of the most important multivariate public key schemes, including the four multivariate signature schemes participating as second round candidates in the NIST standardization process for post-quantum cryptosystems. Furthermore, this book covers the Simple Matrix encryption scheme, which is currently the most promising multivariate public key encryption scheme. This book also covers the current state of security analysis methods for Multivariate Public Key Cryptosystems including the algorithms and theory of solving systems of multivariate polynomial equations over finite fields. Through the book's website, interested readers can find source code to the algorithms handled in this book. In 1994, Dr. Peter Shor from Bell Laboratories proposed a quantum algorithm solving the Integer Factorization and the Discrete Logarithm problem in polynomial time, thus making all of the currently used public key cryptosystems, such as RSA and ECC insecure. Therefore, there is an urgent need for alternative public key schemes which are resistant against quantum computer attacks. Researchers worldwide, as well as companies and governmental organizations have put a tremendous effort into the development of post-quantum public key cryptosystems to meet this challenge. One of the most promising candidates for this are Multivariate Public Key Cryptosystems (MPKCs). The public key of an MPKC is a set of multivariate polynomials over a small finite field. Especially for digital signatures, numerous well-studied multivariate schemes offering very short signatures and high efficiency exist. 
588 |a Description based on online resource; title from digital title page (viewed on November 25, 2020). 
505 0 |a Intro -- Preface -- Changes to the Previous Edition -- Contents -- Notations -- List of Algorithms -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 Cryptography -- 1.2 Public Key Cryptography -- 1.3 Post-Quantum Cryptography -- References -- 2 Multivariate Cryptography -- 2.1 Multivariate Polynomials -- 2.1.1 Matrix Representation -- 2.1.2 Symmetric Matrices Corresponding to a Multivariate Quadratic Polynomial -- 2.2 Construction Methods for MPKC's -- 2.2.1 The Bipolar Construction -- 2.2.1.1 Encryption Schemes ( m ≥n) -- 2.2.1.2 Signature Schemes ( m ≤n) -- 2.2.2 Mixed Systems 
505 8 |a 2.2.2.1 Encryption Schemes (m ≥n) -- 2.2.2.2 Signature Schemes ( m ≤n) -- 2.2.3 IP Based Identification -- 2.2.4 MQ Based Identification -- 2.3 Underlying Problems -- 2.3.1 The MQ Problem -- 2.3.2 The IP Problem -- 2.4 Security and Standard Attacks -- 2.4.1 Security Categories -- 2.5 Advantages and Disadvantages -- References -- 3 The Matsumoto-Imai Cryptosystem -- 3.1 The Basic Matsumoto-Imai Cryptosystem -- 3.1.1 MI as an Encryption Scheme -- 3.1.2 MI as a Signature Scheme -- 3.1.3 Degree of the Public Key Components -- 3.1.4 Key Sizes and Efficiency -- 3.1.5 Toy Example 
505 8 |a 3.2 The Linearization Equations Attack -- 3.2.1 Linearization Equations Attack on Matsumoto-Imai -- 3.2.2 Toy Example -- 3.3 Encryption Schemes Based on MI -- 3.3.1 Internal Perturbation -- 3.3.2 Differential Attack on PMI -- 3.3.3 Preventing the Differential Attack and PMI+ -- 3.3.4 Toy Example -- 3.4 Signature Schemes Based on MI -- 3.4.1 The Minus Variation and SFlash -- 3.4.2 Toy Example -- 3.4.3 Differential Attack on SFlash -- 3.4.3.1 Skew Symmetric Maps -- 3.4.3.2 The Multiplicative Symmetry -- 3.4.4 Preventing the Differential Attack and PFlash -- 3.4.5 Toy Example -- References 
505 8 |a 4 Hidden Field Equations -- 4.1 The Basic HFE Cryptosystem -- 4.1.1 HFE as an Encryption Scheme -- 4.1.2 HFE as a Signature Scheme -- 4.1.3 Key Sizes and Efficiency -- 4.1.4 Toy Example -- 4.2 Attacks on HFE -- 4.2.1 The Direct Attack on HFE -- 4.2.2 Rank Attacks of the Kipnis-Shamir Type -- 4.2.2.1 The Notion of Q-Rank -- 4.2.2.2 The Case of HFE -- 4.2.2.3 Kipnis-Shamir Modeling -- 4.2.2.4 Minors Modeling -- 4.2.3 Summary of the Security of HFE -- 4.3 Encryption Schemes Based on HFE -- 4.3.1 The IPHFE+ Encryption Scheme -- 4.3.2 Security and Efficiency -- 4.3.3 The ZHFE Encryption Scheme 
505 8 |a 4.3.4 Key Sizes and Efficiency -- 4.3.5 Cryptanalysis of ZHFE -- 4.4 Signature Schemes Based on HFE -- 4.4.1 The HFEv- Signature Scheme -- 4.4.2 Key Sizes and Efficiency -- 4.4.3 Toy Example -- 4.4.4 Security of HFEv- -- 4.4.4.1 Direct Attacks -- 4.4.4.2 The Kipnis-Shamir Attack on HFEv- -- 4.4.5 The Gui Signature Scheme -- 4.4.6 Security -- 4.4.7 Key Sizes and Efficiency -- References -- 5 Oil and Vinegar -- 5.1 The Oil and Vinegar Signature Scheme -- 5.1.1 Properties of the Central Map -- 5.1.2 Key Sizes and Efficiency -- 5.1.3 Toy Example 
650 0 |a Computers  |x Access control.  |0 http://id.loc.gov/authorities/subjects/sh85029553 
650 0 |a Data encryption (Computer science)  |0 http://id.loc.gov/authorities/subjects/sh94001524 
650 0 |a Computer security.  |0 http://id.loc.gov/authorities/subjects/sh90001862 
650 7 |a Computer security.  |2 fast  |0 (OCoLC)fst00872484 
650 7 |a Computers  |x Access control.  |2 fast  |0 (OCoLC)fst00872779 
650 7 |a Data encryption (Computer science)  |2 fast  |0 (OCoLC)fst00887935 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Petzoldt, Albrecht,  |e author. 
700 1 |a Schmidt, Dieter S.,  |e author.  |0 http://id.loc.gov/authorities/names/n88648561 
776 0 8 |i Print version:  |a Ding, Jintai  |t Multivariate Public Key Cryptosystems  |d New York, NY : Springer,c2020  |z 9781071609859 
830 0 |a Advances in information security ;  |v v. 80.  |0 http://id.loc.gov/authorities/names/n00006047 
903 |a HeVa 
929 |a oclccm 
999 f f |i 58328a1c-d25f-51b7-ad06-b7033bcb7ba5  |s 84617040-1c8f-5ff6-abaa-5f2264ce4558 
928 |t Library of Congress classification  |a QA76.9.A25 D5635 2020  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-1-0716-0987-3  |z Springer Nature  |g ebooks  |i 12623960