Advances in bioinformatics and computational biology : 13th Brazilian Symposium on Bioinformatics, BSB 2020, São Paulo, Brazil, November 23-27, 2020, Proceedings /

Saved in:
Bibliographic Details
Meeting name:Brazilian Symposium on Bioinformatics (13th : 2020 : Online)
Imprint:Cham : Springer, 2020.
Description:1 online resource (284 pages)
Language:English
Series:Lecture Notes in Computer Science ; 12558
LNCS sublibrary, SL 8, Bioinformatics
Lecture notes in computer science ; 12558.
LNCS sublibrary. SL 8, Bioinformatics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12609632
Hidden Bibliographic Details
Varying Form of Title:BSB 2020
Other authors / contributors:Setubal, João Carlos.
Silva, Waldeyr Mendes.
ISBN:9783030657758
3030657752
9783030657741
3030657744
Digital file characteristics:text file
PDF
Notes:International conference proceedings.
"This volume contains the accepted papers for BSB 2020, held virtually during November 23-27, 2020"--Preface
Combining Mutation and Gene Network Data in a Machine Learning Approach for False-Positive Cancer Driver Gene Discovery.
Includes author index.
Online resource; title from PDF title page (SpringerLink, viewed February 17, 2021).
Summary:This book constitutes the refereed proceedings of the Brazilian Symposium on Bioinformatics, BSB 2020, held in São Paulo, Brazil, in November 2020. Due to COVID-19 pandemic the conference was held virtually The 20 revised full papers and 5 short papers were carefully reviewed and selected from 45 submissions. The papers address a broad range of current topics in computational biology and bioinformatics.
Other form:Print version: Setubal, João C. Advances in Bioinformatics and Computational Biology. Cham : Springer International Publishing AG, ©2021 9783030657741
Standard no.:10.1007/978-3-030-65775-8

MARC

LEADER 00000cam a2200000Ia 4500
001 12609632
006 m o d
007 cr un|---aucuu
008 201226s2020 sz o 101 0 eng d
005 20240628204631.6
019 |a 1228031436  |a 1228845758  |a 1232857218  |a 1241726916 
020 |a 9783030657758  |q (electronic bk.) 
020 |a 3030657752  |q (electronic bk.) 
020 |z 9783030657741  |q (print) 
020 |z 3030657744 
024 7 |a 10.1007/978-3-030-65775-8  |2 doi 
035 |a (OCoLC)1228042292  |z (OCoLC)1228031436  |z (OCoLC)1228845758  |z (OCoLC)1232857218  |z (OCoLC)1241726916 
035 9 |a (OCLCCM-CC)1228042292 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d GW5XE  |d OCLCO  |d UPM  |d OCLCF  |d SNU  |d YDX  |d OCLCQ  |d OCL 
049 |a MAIN 
050 4 |a QH324.2 
072 7 |a PSD  |2 bicssc 
072 7 |a SCI056000  |2 bisacsh 
072 7 |a PSD  |2 thema 
072 7 |a UB  |2 thema 
111 2 |a Brazilian Symposium on Bioinformatics  |n (13th :  |d 2020 :  |c Online) 
245 1 0 |a Advances in bioinformatics and computational biology :  |b 13th Brazilian Symposium on Bioinformatics, BSB 2020, São Paulo, Brazil, November 23-27, 2020, Proceedings /  |c João C. Setubal, Waldeyr Mendes Silva (eds.). 
246 3 |a BSB 2020 
260 |a Cham :  |b Springer,  |c 2020. 
300 |a 1 online resource (284 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Lecture Notes in Computer Science ;  |v 12558 
490 1 |a LNCS sublibrary, SL 8, Bioinformatics 
500 |a International conference proceedings. 
500 |a "This volume contains the accepted papers for BSB 2020, held virtually during November 23-27, 2020"--Preface 
505 0 |a Intro -- Preface -- Organization -- Contents -- A Classification of de Bruijn Graph Approaches for De Novo Fragment Assembly -- 1 Introduction -- 2 Genome Assembly -- 3 The de Bruijn Graph De Novo Assembly Approach -- 4 de Bruijn Graph Based Assemblers -- 4.1 Main Classification of Approaches -- 4.2 General Strategies to Reduce Memory Footprint for DBG Construction -- 4.3 Specific Strategies to Reduce the Large Memory Consumption -- 4.4 k-mers Counters -- 5 Conclusions -- References -- Redundancy Treatment of NGS Contigs in Microbial Genome Finishing with Hashing-Based Approach 
505 8 |a 1 Introduction -- 1.1 DNA Repetitions and Contigs Redundancy -- 1.2 Computational Methods for Redundancy Detection in Sequences -- 1.3 Contribution of This Work -- 2 Biological Dataset and Assembly -- 3 The Proposed Hybrid Model -- 4 Results and Discussion -- 5 Conclusion -- References -- Efficient Out-of-Core Contig Generation -- 1 Introduction -- 2 De Novo Assembly Using de Bruijn Graph -- 3 Overview of Our Proposed Approach -- 4 Contig Generation -- 5 Conclusions -- References -- In silico Pathogenomic Analysis of Corynebacterium Pseudotuberculosis Biovar Ovis -- 1 Introduction 
505 8 |a 1.1 Corynebacterium Pseudotuberculosis -- 1.2 Comparative Pathogenomics -- 1.3 Determinants of Pathogenicity -- 2 Methods -- 2.1 Pan-Genomic Analysis of C. Pseudotuberculosis Biovar Ovis -- 2.2 Prediction of Virulence Factors in Corynebacterium -- 2.3 Composition of Pathogenicity Islands (PAI) -- 2.4 Synteny in C. Pseudotuberculosis Genomes -- 2.5 In Silico Prediction of Pathogenicity Potentials -- 2.6 Protein-Protein Interactions -- 2.7 Identification of Prophages -- 3 Results and Discussion -- 3.1 Identification of Adherence Factors -- 3.2 Identification of Iron Uptake Factors 
505 8 |a 3.3 Identification of Regulation Factors -- 3.4 Identification of Toxin Factors -- 3.5 Prediction of Pathogenicity Islands -- 3.6 Prediction of Pathogenicity Potentials -- 3.7 Identification of Prophages -- 3.8 Prediction of Protein-Protein Interactions -- 4 Conclusion -- References -- Assessing the Sex-Related Genomic Composition Difference Using a k-mer-Based Approach: A Case of Study in Arapaima gigas (Pirarucu) -- 1 Introduction -- 2 Materials and Methods -- 2.1 Sequencing and Data Processing -- 2.2 k-mer Analysis -- 3 Results and Discussion -- 4 Conclusions -- References 
505 8 |a COVID-19 X-ray Image Diagnostic with Deep Neural Networks -- 1 Introduction -- 2 Dataset -- 3 Methodology -- 3.1 Data Preparation -- 3.2 Classification Model -- 4 Experimental Evaluation -- 4.1 Model Evaluation -- 4.2 Multi-class and Binary Classification of the Unbalanced Dataset -- 4.3 Ensemble of CNNs -- 4.4 Test Set Evaluation -- 5 Conclusions and Future Work -- References -- Classification of Musculoskeletal Abnormalities with Convolutional Neural Networks -- 1 Introduction -- 2 Methodology -- 2.1 Dataset -- 2.2 Experiments -- 3 Results and Discussion -- 4 Conclusion -- References 
500 |a Combining Mutation and Gene Network Data in a Machine Learning Approach for False-Positive Cancer Driver Gene Discovery. 
500 |a Includes author index. 
520 |a This book constitutes the refereed proceedings of the Brazilian Symposium on Bioinformatics, BSB 2020, held in São Paulo, Brazil, in November 2020. Due to COVID-19 pandemic the conference was held virtually The 20 revised full papers and 5 short papers were carefully reviewed and selected from 45 submissions. The papers address a broad range of current topics in computational biology and bioinformatics. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed February 17, 2021). 
650 0 |a Bioinformatics  |v Congresses. 
650 0 |a Computational biology  |v Congresses. 
650 7 |a Computational biology.  |2 fast  |0 (OCoLC)fst00871990 
650 7 |a Bioinformatics.  |2 fast  |0 (OCoLC)fst00832181 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
655 4 |a Electronic books. 
700 1 |a Setubal, João Carlos.  |0 http://id.loc.gov/authorities/names/n96090924 
700 1 |a Silva, Waldeyr Mendes. 
776 0 8 |i Print version:  |a Setubal, João C.  |t Advances in Bioinformatics and Computational Biology.  |d Cham : Springer International Publishing AG, ©2021  |z 9783030657741 
830 0 |a Lecture notes in computer science ;  |v 12558.  |0 http://id.loc.gov/authorities/names/n42015162 
830 0 |a LNCS sublibrary.  |n SL 8,  |p Bioinformatics.  |0 http://id.loc.gov/authorities/names/n2008077790 
903 |a HeVa 
929 |a oclccm 
999 f f |i 94084074-00f1-5bb7-9b41-1de2bdb96df2  |s 664335a2-ade5-5109-a02d-daf0e8137e7b 
928 |t Library of Congress classification  |a QH324.2  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-65775-8  |z Springer Nature  |g ebooks  |i 12625240