Practice of Bayesian probability theory in geotechnical engineering /

Saved in:
Bibliographic Details
Author / Creator:Zhou, Wan-Huan, author.
Imprint:Singapore : Springer, [2021]
Description:1 online resource (xxvii, 324 pages) : illustrations (some color)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12610308
Hidden Bibliographic Details
Other authors / contributors:Yin, Zhen-Yu, author.
Yuen, Ka-Veng, author.
ISBN:9789811591051
9811591059
9789811591044
Notes:"Jointly published with Tongji University Press."
Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed January 22, 2021).
Summary:This book introduces systematically the application of Bayesian probabilistic approach in soil mechanics and geotechnical engineering. Four typical problems are analyzed by using Bayesian probabilistic approach, i.e., to model the effect of initial void ratio on the soil-water characteristic curve (SWCC) of unsaturated soil, to select the optimal model for the prediction of the creep behavior of soft soil under one-dimensional straining, to identify model parameters of soils and to select constitutive model of soils considering critical state concept. This book selects the simple and easy-to-understand Bayesian probabilistic algorithm, so that readers can master the Bayesian method to analyze and solve the problem in a short time. In addition, this book provides MATLAB codes for various algorithms and source codes for constitutive models so that readers can directly analyze and practice. This book is useful as a postgraduate textbook for civil engineering, hydraulic engineering, transportation, railway, engineering geology and other majors in colleges and universities, and as an elective course for senior undergraduates. It is also useful as a reference for relevant professional scientific researchers and engineers.
Other form:Print version: 9811591040
Standard no.:10.1007/978-981-15-9105-1

MARC

LEADER 00000cam a2200000Ii 4500
001 12610308
006 m o d
007 cr nn||||mamaa
008 201113s2021 si a ob 000 0 eng d
005 20240509213733.4
019 |a 1237487365 
020 |a 9789811591051  |q (electronic bk.) 
020 |a 9811591059  |q (electronic bk.) 
020 |z 9789811591044 
024 7 |a 10.1007/978-981-15-9105-1  |2 doi 
035 |a (OCoLC)1225563640  |z (OCoLC)1237487365 
035 9 |a (OCLCCM-CC)1225563640 
040 |a SFB  |b eng  |e rda  |c SFB  |d OCLCO  |d OCLCF  |d GW5XE  |d OCLCO  |d RDF 
049 |a MAIN 
050 4 |a TA705 
072 7 |a RBP  |2 bicssc 
072 7 |a SCI042000  |2 bisacsh 
072 7 |a RBP  |2 thema 
072 7 |a RBGK  |2 thema 
100 1 |a Zhou, Wan-Huan,  |e author. 
245 1 0 |a Practice of Bayesian probability theory in geotechnical engineering /  |c Wan-Huan Zhou, Zhen-Yu Yin, Ka-Veng Yuen. 
264 1 |a Singapore :  |b Springer,  |c [2021] 
300 |a 1 online resource (xxvii, 324 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a "Jointly published with Tongji University Press." 
504 |a Includes bibliographical references. 
520 |a This book introduces systematically the application of Bayesian probabilistic approach in soil mechanics and geotechnical engineering. Four typical problems are analyzed by using Bayesian probabilistic approach, i.e., to model the effect of initial void ratio on the soil-water characteristic curve (SWCC) of unsaturated soil, to select the optimal model for the prediction of the creep behavior of soft soil under one-dimensional straining, to identify model parameters of soils and to select constitutive model of soils considering critical state concept. This book selects the simple and easy-to-understand Bayesian probabilistic algorithm, so that readers can master the Bayesian method to analyze and solve the problem in a short time. In addition, this book provides MATLAB codes for various algorithms and source codes for constitutive models so that readers can directly analyze and practice. This book is useful as a postgraduate textbook for civil engineering, hydraulic engineering, transportation, railway, engineering geology and other majors in colleges and universities, and as an elective course for senior undergraduates. It is also useful as a reference for relevant professional scientific researchers and engineers. 
505 0 |a Problem of Uncertainties in Geotechnical Engineering -- Estimation of SWCC and Permeability for Granular Soils -- Modeling SWCC for Coarse-Grained and Fine-Grained Soil -- Model Updating and Uncertainty Analysis for Creep of Clay -- Effect of Loading Duration on Uncertainty in Creep Analysis for Clay -- Model Class Selection for Sand with Generalization Ability Evaluation -- Parametric Identification of Advanced Soil Models for Sand -- Estimation of Pullout Shear Strength of Grouted Soil Nails -- Selection of Physical and Chemical Properties of Natural Fibers for Predicting Soil Reinforcement -- An Efficient Probabilistic Back-analysis Method for Braced Excavations. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed January 22, 2021). 
650 0 |a Geotechnical engineering  |x Mathematics. 
650 0 |a Probabilities.  |0 http://id.loc.gov/authorities/subjects/sh85107090 
650 0 |a Bayesian statistical decision theory.  |0 http://id.loc.gov/authorities/subjects/sh85012506 
650 0 |a Engineering geology.  |0 http://id.loc.gov/authorities/subjects/sh85043221 
650 0 |a Foundations.  |0 http://id.loc.gov/authorities/subjects/sh85051049 
650 0 |a Hydraulics.  |0 http://id.loc.gov/authorities/subjects/sh85063354 
650 0 |a Artificial intelligence.  |0 http://id.loc.gov/authorities/subjects/sh85008180 
650 0 |a Computer simulation.  |0 http://id.loc.gov/authorities/subjects/sh85029533 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computer simulation.  |2 fast  |0 (OCoLC)fst00872518 
650 7 |a Engineering geology.  |2 fast  |0 (OCoLC)fst00910529 
650 7 |a Foundations.  |2 fast  |0 (OCoLC)fst00933266 
650 7 |a Geotechnical engineering.  |2 fast  |0 (OCoLC)fst01893896 
650 7 |a Hydraulics.  |2 fast  |0 (OCoLC)fst00964776 
650 7 |a Probabilities.  |2 fast  |0 (OCoLC)fst01077737 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Yin, Zhen-Yu,  |e author. 
700 1 |a Yuen, Ka-Veng,  |e author.  |0 http://id.loc.gov/authorities/names/n2009070749 
776 0 8 |i Print version:  |z 9811591040 
903 |a HeVa 
929 |a oclccm 
999 f f |i 7115bf60-c821-58c7-b25e-b51ddb30deca  |s 6e52f7fe-28da-54ac-8cc2-df99624906b2 
928 |t Library of Congress classification  |a TA705  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-15-9105-1  |z Springer Nature  |g ebooks  |i 12625915