Finite elements. I, Approximation and interpolation /

Saved in:
Bibliographic Details
Author / Creator:Ern, Alexandre, 1967- author.
Imprint:Cham, Switzerland : Springer, [2021]
Description:1 online resource.
Language:English
Series:Texts in applied mathematics ; volume 72
Texts in applied mathematics ; 72.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12611139
Hidden Bibliographic Details
Varying Form of Title:Approximation and interpolation
Other authors / contributors:Guermond, Jean-Luc, author.
ISBN:9783030563417
3030563413
3030563405
9783030563400
9783030563424
3030563421
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Access restricted to registered UOB users with valid accounts.
Online resource; title from PDF title page (SpringerLink, viewed March 30, 2021).
Summary:This book is the first volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume I is divided into 23 chapters plus two appendices on Banach and Hilbert spaces and on differential calculus. This volume focuses on the fundamental ideas regarding the construction of finite elements and their approximation properties. It addresses the all-purpose Lagrange finite elements, but also vector-valued finite elements that are crucial to approximate the divergence and the curl operators. In addition, it also presents and analyzes quasi-interpolation operators and local commuting projections. The volume starts with four chapters on functional analysis, which are packed with examples and counterexamples to familiarize the reader with the basic facts on Lebesgue integration and weak derivatives. Volume I also reviews important implementation aspects when either developing or using a finite element toolbox, including the orientation of meshes and the enumeration of the degrees of freedom.
Other form:Print version: 9783030563400
Standard no.:10.1007/978-3-030-56341-7

MARC

LEADER 00000cam a2200000Ii 4500
001 12611139
006 m o d
007 cr |||||||||||
008 210227s2021 sz ob 001 0 eng d
005 20240701203242.4
019 |a 1238004955  |a 1244117619  |a 1249943568  |a 1253408855 
020 |a 9783030563417  |q electronic book 
020 |a 3030563413  |q electronic book 
020 |z 3030563405 
020 |z 9783030563400 
020 |a 9783030563424  |q (print) 
020 |a 3030563421 
024 7 |a 10.1007/978-3-030-56341-7  |2 doi 
035 |a (OCoLC)1239982700  |z (OCoLC)1238004955  |z (OCoLC)1244117619  |z (OCoLC)1249943568  |z (OCoLC)1253408855 
035 9 |a (OCLCCM-CC)1239982700 
037 |b Springer 
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d GW5XE  |d YDX  |d OCLCO  |d DCT  |d GZM  |d OCLCF  |d LEATE  |d VT2  |d LIP  |d UKAHL 
049 |a MAIN 
050 4 |a QA377 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
072 7 |a PBKJ  |2 thema 
100 1 |a Ern, Alexandre,  |d 1967-  |e author.  |0 http://id.loc.gov/authorities/names/n94063395 
245 1 0 |a Finite elements.  |n I,  |p Approximation and interpolation /  |c Alexandre Ern, Jean-Luc Guermond. 
246 3 0 |a Approximation and interpolation 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2021] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in applied mathematics ;  |v volume 72 
520 |a This book is the first volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume I is divided into 23 chapters plus two appendices on Banach and Hilbert spaces and on differential calculus. This volume focuses on the fundamental ideas regarding the construction of finite elements and their approximation properties. It addresses the all-purpose Lagrange finite elements, but also vector-valued finite elements that are crucial to approximate the divergence and the curl operators. In addition, it also presents and analyzes quasi-interpolation operators and local commuting projections. The volume starts with four chapters on functional analysis, which are packed with examples and counterexamples to familiarize the reader with the basic facts on Lebesgue integration and weak derivatives. Volume I also reviews important implementation aspects when either developing or using a finite element toolbox, including the orientation of meshes and the enumeration of the degrees of freedom. 
505 0 |a Part I: Elements of Functional Analysis. Lebesgue spaces ; Weak derivatives and Sobolev spaces ; Traces and Poincare Inequalities ; Duality in Sobolev spaces -- Part II: Introduction to Finite Elements. Main ideas and definitions ; One-dimensional finite elements and tensorization ; Simplicial finite elements -- Part III: Finite element interpolation. Meshes ; Finite element generation ; Mesh orientation ; Local interpolation on affine meshes ; Local inverse and functional inequalities ; Local interpolation on non-affine meshes ; H(div) finite elements ; H(curl) finite elements ; Local interpolation in H(div) and H(curl) (I) ; Local interpolation in H(div) and H(curl) (II) -- Part IV: Finite element spaces. From broken to conforming spaces ; Main properties of the conforming spaces ; Face gluing ; Construction of the connectivity classes ; Quasi-interpolation and best approximation ; Commuting quasi-interpolation -- Appendices. Banach and Hillbert spaces ; Differential calculus. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 30, 2021). 
506 |a Access restricted to registered UOB users with valid accounts. 
650 0 |a Finite element method.  |0 http://id.loc.gov/authorities/subjects/sh85048349 
650 0 |a Differential equations, Partial  |x Numerical solutions.  |0 http://id.loc.gov/authorities/subjects/sh85037915 
650 0 |a Functional analysis.  |0 http://id.loc.gov/authorities/subjects/sh85052312 
650 7 |a Differential equations, Partial  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00893488 
650 7 |a Finite element method.  |2 fast  |0 (OCoLC)fst00924897 
650 7 |a Functional analysis.  |2 fast  |0 (OCoLC)fst00936061 
655 0 |a Electronic books. 
700 1 |a Guermond, Jean-Luc,  |e author. 
773 0 |t Springer Nature eBook  |w (OCoLC-LEATE)288477 
776 0 8 |i Print version:  |z 9783030563400 
830 0 |a Texts in applied mathematics ;  |v 72.  |0 http://id.loc.gov/authorities/names/n86729581 
903 |a HeVa 
929 |a oclccm 
999 f f |i a1920dff-03ac-52be-a017-9a7f3d219089  |s 6152c3e4-214a-5849-9389-fbfc28d80b29 
928 |t Library of Congress classification  |a QA377  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-56341-7  |z Springer Nature  |g ebooks  |i 12626747