Social big data analytics : practices, techniques, and applications /

Saved in:
Bibliographic Details
Author / Creator:Abu-Salih, Bilal, author.
Imprint:Singapore : Springer, [2021]
Description:1 online resource (x, 218 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12611638
Hidden Bibliographic Details
Other authors / contributors:Wongthongtham, Pornpit, author.
Zhu, Dengya, author.
Chan, Kit Yan, author.
Rudra, Amit, author.
ISBN:9789813366527
9813366524
9789813366510
Notes:Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed April 5, 2021).
Summary:This book focuses on data and how modern business firms use social data, specifically Online Social Networks (OSNs) incorporated as part of the infrastructure for a number of emerging applications such as personalized recommendation systems, opinion analysis, expertise retrieval, and computational advertising. This book identifies how in such applications, social data offers a plethora of benefits to enhance the decision making process. This book highlights that business intelligence applications are more focused on structured data; however, in order to understand and analyse the social big data, there is a need to aggregate data from various sources and to present it in a plausible format. Big Social Data (BSD) exhibit all the typical properties of big data: wide physical distribution, diversity of formats, non-standard data models, independently-managed and heterogeneous semantics but even further valuable with marketing opportunities. The book provides a review of the current state-of-the-art approaches for big social data analytics as well as to present dissimilar methods to infer value from social data. The book further examines several areas of research that benefits from the propagation of the social data. In particular, the book presents various technical approaches that produce data analytics capable of handling big data features and effective in filtering out unsolicited data and inferring a value. These approaches comprise advanced technical solutions able to capture huge amounts of generated data, scrutinise the collected data to eliminate unwanted data, measure the quality of the inferred data, and transform the amended data for further data analysis. Furthermore, the book presents solutions to derive knowledge and sentiments from BSD and to provide social data classification and prediction. The approaches in this book also incorporate several technologies such as semantic discovery, sentiment analysis, affective computing and machine learning. This book has additional special feature enriched with numerous illustrations such as tables, graphs and charts incorporating advanced visualisation tools in accessible an attractive display.
Other form:Print version: 9789813366510
Print version: 9789813366534
Print version: 9789813366541
Standard no.:10.1007/978-981-33-6652-7

MARC

LEADER 00000cam a2200000Ii 4500
001 12611638
005 20210813213023.0
006 m o d
007 cr nn||||mamaa
008 210310s2021 si a ob 000 0 eng d
019 |a 1243545935  |a 1244629264 
020 |a 9789813366527  |q (electronic bk.) 
020 |a 9813366524  |q (electronic bk.) 
020 |z 9789813366510 
024 7 |a 10.1007/978-981-33-6652-7  |2 doi 
035 |a (OCoLC)1244118785  |z (OCoLC)1243545935  |z (OCoLC)1244629264 
035 9 |a (OCLCCM-CC)1244118785 
037 |b Springer 
040 |a DCT  |b eng  |e rda  |c DCT  |d OCLCO  |d EBLCP  |d GW5XE  |d OCLCO  |d N$T  |d OCLCF  |d UKAHL 
049 |a MAIN 
050 4 |a QA76.9.B45 
072 7 |a BUS070030  |2 bisacsh 
100 1 |a Abu-Salih, Bilal,  |e author. 
245 1 0 |a Social big data analytics :  |b practices, techniques, and applications /  |c Bilal Abu-Salih, Pornpit Wongthongtham, Dengya Zhu, Kit Yan Chan, Amit Rudra. 
264 1 |a Singapore :  |b Springer,  |c [2021] 
300 |a 1 online resource (x, 218 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
520 |a This book focuses on data and how modern business firms use social data, specifically Online Social Networks (OSNs) incorporated as part of the infrastructure for a number of emerging applications such as personalized recommendation systems, opinion analysis, expertise retrieval, and computational advertising. This book identifies how in such applications, social data offers a plethora of benefits to enhance the decision making process. This book highlights that business intelligence applications are more focused on structured data; however, in order to understand and analyse the social big data, there is a need to aggregate data from various sources and to present it in a plausible format. Big Social Data (BSD) exhibit all the typical properties of big data: wide physical distribution, diversity of formats, non-standard data models, independently-managed and heterogeneous semantics but even further valuable with marketing opportunities. The book provides a review of the current state-of-the-art approaches for big social data analytics as well as to present dissimilar methods to infer value from social data. The book further examines several areas of research that benefits from the propagation of the social data. In particular, the book presents various technical approaches that produce data analytics capable of handling big data features and effective in filtering out unsolicited data and inferring a value. These approaches comprise advanced technical solutions able to capture huge amounts of generated data, scrutinise the collected data to eliminate unwanted data, measure the quality of the inferred data, and transform the amended data for further data analysis. Furthermore, the book presents solutions to derive knowledge and sentiments from BSD and to provide social data classification and prediction. The approaches in this book also incorporate several technologies such as semantic discovery, sentiment analysis, affective computing and machine learning. This book has additional special feature enriched with numerous illustrations such as tables, graphs and charts incorporating advanced visualisation tools in accessible an attractive display. 
505 0 |a Chapter 1. Social Big Data: An Overview and Applications -- Chapter 2. Introduction to Big data Technology -- Chapter 3. Credibility Analysis in Social Big Data -- Chapter 4. Semantic data discovery from Social Big Data -- Chapter 5. Predictive analytics using Social Big Data and machine learning -- Chapter 6. Affective Design Using Social Big Data -- Chapter 7. Sentiment Analysis on Big News Media Data. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed April 5, 2021). 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 0 |a Online social networks.  |0 http://id.loc.gov/authorities/subjects/sh2006006990 
650 0 |a Marketing  |x Data processing.  |0 http://id.loc.gov/authorities/subjects/sh2008107427 
650 0 |a Internet marketing.  |0 http://id.loc.gov/authorities/subjects/sh95005028 
650 0 |a Marketing research.  |0 http://id.loc.gov/authorities/subjects/sh85081350 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Internet marketing.  |2 fast  |0 (OCoLC)fst00977272 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Marketing  |x Data processing.  |2 fast  |0 (OCoLC)fst01010187 
650 7 |a Marketing research.  |2 fast  |0 (OCoLC)fst01010284 
650 7 |a Online social networks.  |2 fast  |0 (OCoLC)fst01741311 
655 4 |a Electronic books. 
700 1 |a Wongthongtham, Pornpit,  |e author. 
700 1 |a Zhu, Dengya,  |e author. 
700 1 |a Chan, Kit Yan,  |e author.  |0 http://id.loc.gov/authorities/names/nb2012009265 
700 1 |a Rudra, Amit,  |e author. 
776 0 8 |i Print version:  |z 9789813366510 
776 0 8 |i Print version:  |z 9789813366534 
776 0 8 |i Print version:  |z 9789813366541 
903 |a HeVa 
929 |a oclccm 
999 f f |i 0f1478ad-56d3-5fc3-ba27-055f321fb888  |s 97310a36-b15f-55c8-944b-a1c99c4b35c1 
928 |t Library of Congress classification  |a QA76.9.B45  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-33-6652-7  |z Springer Nature  |g ebooks  |i 12627246