A guide to spectral theory : applications and exercises /

Saved in:
Bibliographic Details
Author / Creator:Cheverry, Christophe.
Imprint:Cham : Birkhäuser, 2021.
Description:1 online resource (xx, 258 pages)
Language:English
Series:Birkhäuser advanced texts Basler Lehrbücher, 1019-6242
Birkhäuser advanced texts,
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12612797
Hidden Bibliographic Details
Other authors / contributors:Raymond, Nicolas, author.
ISBN:9783030674625
3030674622
3030674614
9783030674618
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed May 11, 2021).
Summary:This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.
Other form:Original 3030674614 9783030674618
Standard no.:10.1007/978-3-030-67462-5

MARC

LEADER 00000cam a2200000Ia 4500
001 12612797
006 m o d
007 cr |n|||||||||
008 210511s2021 sz ob 001 0 eng d
005 20240705191416.7
019 |a 1250347906  |a 1251449185  |a 1253556769  |a 1255224704  |a 1255233034 
020 |a 9783030674625  |q (electronic bk.) 
020 |a 3030674622  |q (electronic bk.) 
020 |z 3030674614  |q (print) 
020 |z 9783030674618  |q (print) 
024 7 |a 10.1007/978-3-030-67462-5  |2 doi 
035 |a (OCoLC)1250306417  |z (OCoLC)1250347906  |z (OCoLC)1251449185  |z (OCoLC)1253556769  |z (OCoLC)1255224704  |z (OCoLC)1255233034 
035 9 |a (OCLCCM-CC)1250306417 
040 |a YDX  |b eng  |c YDX  |d GW5XE  |d OCLCO  |d OCLCF  |d LIP  |d EBLCP  |d OCLCO 
049 |a MAIN 
050 4 |a QA320 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
100 1 |a Cheverry, Christophe.  |0 http://id.loc.gov/authorities/names/no99030125 
245 1 2 |a A guide to spectral theory :  |b applications and exercises /  |c Christophe Cheverry, Nicolas Raymond. 
260 |a Cham :  |b Birkhäuser,  |c 2021. 
300 |a 1 online resource (xx, 258 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Birkhäuser advanced texts Basler Lehrbücher,  |x 1019-6242 
505 0 |a Foreword -- Prolegomena -- Chapter 1: A First Look at Spectral Theory -- Chapter 2: Unbounded Operators -- Chapter 3: Spectrum -- Chapter 4: Compact Operators -- Chapter 5: Fredholm Theory -- Chapter 6:Spectrum of Self-Adjoint Operators -- Chapter 7: Hille-Yosida and Stone Theorems -- Chapter 8: About the Spectral Measure -- Chapter 9: Trace-class and Hilbert-Schmidt Operators -- Chapter 10: Selected Applications of the Functional Calculus -- Appendix A: Reminders of Functional Analysis. 
504 |a Includes bibliographical references and index. 
520 |a This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed May 11, 2021). 
650 0 |a Spectral theory (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85126408 
650 0 |a Linear operators.  |0 http://id.loc.gov/authorities/subjects/sh85077178 
650 7 |a Linear operators.  |2 fast  |0 (OCoLC)fst00999087 
650 7 |a Spectral theory (Mathematics)  |2 fast  |0 (OCoLC)fst01129072 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863 
655 7 |a Textbooks.  |2 lcgft  |0 http://id.loc.gov/authorities/genreForms/gf2014026191 
700 1 |a Raymond, Nicolas,  |e author.  |0 http://id.loc.gov/authorities/names/no2017059145 
776 0 8 |c Original  |z 3030674614  |z 9783030674618  |w (OCoLC)1226764100 
830 0 |a Birkhäuser advanced texts,  |x 1019-6242  |0 http://id.loc.gov/authorities/names/n93031882 
903 |a HeVa 
929 |a oclccm 
999 f f |i efe72da3-482d-5dbd-8e49-2ff79994fc82  |s 4cd92ae7-5c0c-5dbf-b887-a7719b96ad42 
928 |t Library of Congress classification  |a QA320  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-67462-5  |z Springer Nature  |g ebooks  |i 12628405