Quaternion algebras /

Saved in:
Bibliographic Details
Author / Creator:Voight, John, author.
Imprint:Cham : Springer, 2021.
Description:1 online resource
Language:English
Series:Graduate texts in mathematics, 0072-5285 ; 288
Graduate texts in mathematics ; 288.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12613523
Hidden Bibliographic Details
ISBN:9783030566944
3030566943
3030566927
9783030566920
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references and index.
Open access.
Summary:This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces.
Other form:Print version: Voight, John. Quaternion algebras. Cham : Springer, 2021 3030566927 9783030566920
Standard no.:10.1007/978-3-030-56694-4

MARC

LEADER 00000cam a2200000 i 4500
001 12613523
006 m o d
007 cr |n|||||||||
008 210702s2021 sz ob 001 0 eng d
005 20220624111547.0
019 |a 1266811759 
020 |a 9783030566944  |q (electronic bk.) 
020 |a 3030566943  |q (electronic bk.) 
020 |z 3030566927 
020 |z 9783030566920 
024 7 |a 10.1007/978-3-030-56694-4  |2 doi 
035 |a (OCoLC)1258658936  |z (OCoLC)1266811759 
035 9 |a (OCLCCM-CC)1258658936 
037 |b Springer 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d NOC  |d OCLCO  |d GW5XE  |d OCLCO  |d OCLCF  |d OCLCO  |d DCT  |d OCLCQ  |d OCLCO  |d EBLCP 
049 |a MAIN 
050 4 |a QA196 
072 7 |a MAT002010  |2 bisacsh 
100 1 |a Voight, John,  |e author. 
245 1 0 |a Quaternion algebras /  |c John Voight 
264 1 |a Cham :  |b Springer,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Graduate texts in mathematics,  |x 0072-5285 ;  |v 288 
506 0 |a Open access.  |5 GW5XE 
520 |a This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. 
505 0 |a 1. Introduction -- 2. Beginnings -- 3. Involutions -- 4. Quadratic Forms -- 5. Ternary Quadratic Forms -- 6. Characteristic 2 -- 7. Simple Algebras -- 8. Simple Algebras and Involutions -- 9. Lattices and Integral Quadratic Forms -- 10. Orders -- 11. The Hurwitz Order -- 12. Ternary Quadratic Forms Over Local Fields -- 13. Quaternion Algebras Over Local Fields -- 14. Quaternion Algebras Over Global Fields -- 15. Discriminants -- 16. Quaternion Ideals and Invertability -- 17. Classes of Quaternion Ideals -- 18. Picard Group -- 19. Brandt Groupoids -- 20. Integral Representation Theory -- 21. Hereditary and Extremal Orders -- 22. Ternary Quadratic Forms -- 23. Quaternion Orders -- 24. Quaternion Orders: Second Meeting -- 25. The Eichler Mass Formula -- 26. Classical Zeta Functions -- 27. Adelic Framework -- 28. Strong Approximation -- 29. Idelic Zeta Functions -- 30. Optimal Embeddings -- 31. Selectivity -- 32. Unit Groups -- 33. Hyperbolic Plane -- 34. Discrete Group Actions -- 35. Classical Modular Group -- 36. Hyperbolic Space -- 37. Fundamental Domains -- 38. Quaternionic Arithmetic Groups -- 39. Volume Formula -- 40. Classical Modular Forms -- 41. Brandt Matrices -- 42. Supersingular Elliptic Curves -- 43. Abelian Surfaces with QM. 
504 |a Includes bibliographical references and index. 
650 0 |a Quaternions.  |0 http://id.loc.gov/authorities/subjects/sh85109754 
650 0 |a Functions, Quaternion.  |0 http://id.loc.gov/authorities/subjects/sh85052347 
650 6 |a Quaternions. 
650 6 |a Fonctions quaternioniennes. 
650 7 |a Functions, Quaternion.  |2 fast  |0 (OCoLC)fst00936131 
650 7 |a Quaternions.  |2 fast  |0 (OCoLC)fst01085499 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Voight, John.  |t Quaternion algebras.  |d Cham : Springer, 2021  |z 3030566927  |z 9783030566920  |w (OCoLC)1176327287 
830 0 |a Graduate texts in mathematics ;  |v 288.  |x 0072-5285  |0 http://id.loc.gov/authorities/names/n83723435 
856 4 0 |u https://link.springer.com/book/10.1007/978-3-030-56694-4  |y Springer Nature 
856 4 0 |u https://link.springer.com/10.1007/978-3-030-56694-4  |y Springer Nature 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/71303  |y Open Access Publishing in European Networks 
903 |a HeVa 
929 |a oclccm 
999 f f |i ee8329cd-5b82-5285-a17b-86451e6bb9c5  |s 24d003c7-5ccb-5a2c-949f-08639a838fc6 
928 |t Library of Congress classification  |a QA196  |l Online  |c UC-FullText  |u https://link.springer.com/book/10.1007/978-3-030-56694-4  |z Springer Nature  |u https://link.springer.com/10.1007/978-3-030-56694-4  |z Springer Nature  |u https://directory.doabooks.org/handle/20.500.12854/71303  |z Open Access Publishing in European Networks  |g ebooks  |i 12629130