Plant innate immunity /

Saved in:
Bibliographic Details
Edition:1st ed.
Imprint:Amsterdam ; Boston : Elsevier Academic Press, ©2009.
Description:1 online resource (xxxi, 754 pages) : illustrations, plates
Language:English
Series:Advances in botanical research, 0065-2296 ; v. 51
Advances in botanical research ; v. 51.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12616278
Hidden Bibliographic Details
Other authors / contributors:Loon, L. C. van (Leendert C.)
ISBN:9781444328547
1444328549
9780080888798
0080888798
9780123748348
Notes:Includes bibliographical references and indexes.
Print version record.
Summary:Plant innate immunity is a collective term to describe a complex of interconnected mechanisms that plants use to withstand potential pathogens and herbivores. The last decade has seen a rapid advance in our understanding of the induction, signal-transduction and expression of resistance responses to oomycetes, fungi, bacteria, viruses, nematodes and insects. This volume aims at providing an overview of these processes and mechanisms. Edited by Jean-Claude Kader and Michel Delseny and supported by an international Editorial Board, Advances in Botanical Research publishes in-depth and up-to-date.
Plant innate immunity is a collective term to describe a complex of interconnected mechanisms that plants use to withstand potential pathogens and herbivores. The last decade has seen a rapid advance in our understanding of the induction, signal-transduction and expression of resistance responses to oomycetes, fungi, bacteria, viruses, nematodes and insects. This volume aims at providing an overview of these processes and mechanisms
Other form:Print version: Plant innate immunity. 1st ed. Amsterdam ; Boston : Elsevier Academic Press, ©2009 9780123748348 0123748348
Standard no.:10.1002/9781444328547
Table of Contents:
  • Preface
  • Chapter 1. Why Do Plants Need Defenses?
  • 1.1. Plants as sources of food
  • 1.2. Organisms that use plants as food
  • 1.2.1. Microorganisms
  • 1.2.2. Parasitic angiosperms
  • 1.2.3. Nematodes
  • 1.2.4. Insects
  • 1.2.5. Vertebrates
  • 1.3. Impact of infection and herbivory in natural and agricultural ecosystems
  • 1.3.1. Microorganisms
  • 1.3.2. Parasitic angiosperms
  • 1.3.3. Nematodes
  • 1.3.4. Insects
  • 1.3.5. Vertebrates
  • 1.4. Conclusions
  • Recommended reading
  • References
  • Chapter 2. What Defenses Do Plants Use?
  • 2.1. Introduction
  • 2.2. Defenses used against pathogens
  • 2.2.1. Background
  • 2.2.2. Passive or preexisting defenses
  • 2.2.2.1. Preexisting structural defenses
  • 2.2.2.2. Preexisting chemical defenses
  • 2.2.3. Active or inducible defenses
  • 2.2.3.1. Inducible structural defenses
  • 2.2.3.2. Inducible chemical defenses
  • 2.2.4. Defenses used against pathogens--the next step
  • 2.3. Defenses used against parasitic plants
  • 2.3.1. Background
  • 2.3.2. Preattachment defense mechanisms
  • 2.3.3. Prehaustorial defense mechanisms
  • 2.3.4. Posthaustorial defense mechanisms
  • 2.4. Defenses used against nematodes
  • 2.4.1. Background
  • 2.4.2. Passive or preexisting defenses
  • 2.4.3. Active or inducible defenses
  • 2.4.3.1. Phenylpropanoid metabolism
  • 2.4.3.2. Hypersensitive response
  • 2.5. Defenses used against herbivorous insects
  • 2.5.1. Background
  • 2.5.2. Physical barriers
  • 2.5.2.1. Waxes on the leaf surface
  • 2.5.2.2. Trichomes
  • 2.5.2.3. Secretory canals
  • 2.5.2.4. Leaf toughness and leaf folding
  • 2.5.3. Chemical defenses
  • 2.5.3.1. Terpenes
  • 2.5.3.2. Phenolics
  • 2.5.3.3. NitrogenâÇôcontaining organic compounds
  • 2.5.3.4. ArthropodâÇôinducible proteins
  • 2.5.3.5. Volatile compounds
  • 2.6. Defenses used against vertebrate herbivores
  • 2.6.1. Background
  • 2.6.2. Physical defenses
  • 2.6.3. Chemical defenses
  • 2.6.3.1. Phenolic compounds
  • 2.6.3.2. Terpenoids
  • 2.6.3.3. NitrogenâÇôcontaining compounds
  • 2.6.3.4. Other chemicals
  • 2.6.3.5. A final word on chemical defenses against vertebrate herbivory
  • 2.7. Defenses used against neighboring plants--allelopathy
  • 2.7.1. Background
  • 2.7.2. Allelopathy and the black walnut
  • 2.7.3. Allelopathy and the Californian chaparral
  • 2.7.4. Allelopathy and spotted knapweed
  • 2.8. Conclusions
  • Recommended reading
  • References
  • Chapter 3. Sounding the Alarm: Signaling and Communication in Plant Defense
  • 3.1. Introduction
  • 3.2. Signaling in plantâÇôpathogen interactions
  • 3.2.1. Introduction
  • 3.2.2. Local signaling and basal resistance
  • 3.2.2.1. SA signaling
  • 3.2.2.2. JA signaling
  • 3.2.2.3. ET signaling
  • 3.2.2.4. Signaling involving other plant hormones
  • 3.2.3. Systemic signaling and induced resistance
  • 3.2.3.1. Induced resistance
  • 3.2.3.2. Signaling during SAR
  • 3.2.3.3. Signaling during ISR
  • 3.2.3.4. Priming
  • 3.2.4. Volatile signaling
  • 3.3. Signaling in plantâÇônematode interactions
  • 3.3.1. Introduction
  • 3.3.2. SA signaling
  • 3.3.3. JA signaling
  • 3.4. Signaling in plantâÇôinsect herbivore interactions
  • 3.4.1. Introduction
  • 3.4.2. Local signaling
  • 3.4.2.1. JA signaling
  • 3.4.2.2. ET signaling
  • 3.4.2.3. SA signaling
  • 3.4.2.4. Specificity and regulation of jasmonateâÇôbased defenses
  • 3.4.3. Systemic signaling
  • 3.4.3.1. Systemin
  • 3.4.3.2. JA signaling
  • 3.4.3.3. Within leaf signaling
  • 3.4.4. Volatile signaling
  • 3.4.5. Priming
  • 3.5. Signaling in interactions between plants and vertebrate herbivores
  • 3.6. Signaling in interactions between plants and parasitic plants
  • 3.7. Conclusions
  • Recommended reading
  • References
  • Chapter 4. Plant Defense in the Real World: Multiple Attackers and Beneficial Interactions
  • 4.1. Introduction
  • 4.2. Dealing with multiple attackers: crossâÇôtalk between signaling pathways
  • 4.2.1. TradeâÇôoffs associated with triggering SAâÇômediated defenses
  • 4.2.1.1. SA suppression of JAâÇôinduced defenses
  • 4.2.1.2. Molecular basis of SA suppression of JA defenses
  • 4.2.1.3. Ecological costs of resistance to biotrophic versus necrotrophic pathogens
  • 4.2.1.4. TradeâÇôoffs with mutualistic symbioses
  • 4.2.1.5. Effects of SAâÇô and JAâÇômediated defenses on bacterial communities associated with plants
  • 4.2.2. Triggering SAâÇôdependent defenses does not always compromise defense against insect herbivores
  • 4.2.3. TradeâÇôoffs and positive outcomes associated with triggering JAâÇôdependent defenses
  • 4.2.4. Putting it all together: orchestrating the appropriate defense response
  • 4.3. Can beneficial plantâÇômicrobe interactions induce resistance in plants?
  • 4.3.1. Introduction
  • 4.3.2. Induction of resistance by mycorrhizas
  • 4.3.3. Resistance induced by endophytic and other beneficial fungi
  • 4.4. Conclusions
  • Recommended reading
  • References
  • Chapter 5. The Evolution of Plant Defense
  • 5.1. Introduction
  • 5.2. Hypotheses of plant defense
  • 5.2.1. The growthâÇôdifferentiation balance hypothesis
  • 5.2.2. Optimal defense hypotheses
  • 5.2.3. Plant apparency hypothesis
  • 5.2.4. The carbonâÇônutrient balance hypothesis
  • 5.2.5. The growth rate hypothesis
  • 5.2.6. Hypotheses of plant defense--where next?
  • 5.3. Evolution of plant defense strategies
  • 5.3.1. The univariate tradeâÇôoff hypothesis
  • 5.3.2. The resistanceâÇôregrowth tradeâÇôoff hypothesis
  • 5.3.3. The plant apparency hypothesis
  • 5.3.4. The resource availability hypothesis
  • 5.3.5. Plant defense syndromes
  • 5.4. Patterns of plant defense evolution
  • 5.4.1. Adaptive radiation
  • 5.4.2. Escalation of defense potency
  • 5.4.3. Phylogenetic conservatism
  • 5.4.4. Phylogenetic escalation and decline of plant defense strategies
  • 5.5. Why do plants have induced defenses?
  • 5.5.1. Costs
  • 5.5.1.1. Allocation costs associated with induced responses to herbivory
  • 5.5.1.2. Allocation costs associated with induced responses to pathogens
  • 5.5.2. Targeting of inducible direct defenses
  • 5.5.3. Targeting of inducible indirect defenses
  • 5.5.4. Dispersal of damage
  • 5.5.5. Possible role of pathogenic bacteria in the evolution of SAR
  • 5.5.6. Conclusion
  • 5.6. The coevolutionary arms race
  • 5.7. Conclusions
  • Recommended reading
  • References
  • Chapter 6. Exploiting Plant Defense
  • 6.1. Introduction
  • 6.2. Using plant resistance to protect crops--breeding
  • 6.2.1. Introduction
  • 6.2.2. Breeding for resistance
  • 6.2.2.1. Sources of resistance
  • 6.2.2.2. Breeding methods and selection strategies
  • 6.2.3. Resistance in practice
  • 6.2.4. Types of resistance
  • 6.2.4.1. Monogenic resistance
  • 6.2.4.2. Polygenic resistance
  • 6.2.4.3. Durable resistance
  • 6.2.4.4. GeneâÇôforâÇôgene concept
  • 6.2.5. Making life more difficult for the attacker
  • 6.3. Using plant resistance to protect crops--induced resistance
  • 6.3.1. Introduction
  • 6.3.2. Induced resistance for pathogen control
  • 6.3.3. Induced resistance for control of herbivorous insects
  • 6.3.4. Induced resistance for control of nematodes and parasitic plants
  • 6.4. Using plant resistance to protect crops--biotechnological approaches
  • 6.4.1. Introduction
  • 6.4.2. Engineering resistance to pathogens
  • 6.4.3. Engineering resistance to insects
  • 6.4.4. Prospects for using transgenic resistance
  • 6.5. Conclusions
  • Recommended reading
  • References
  • Index