Linear dynamical systems on Hilbert spaces : typical properties and explicit examples /

Saved in:
Bibliographic Details
Author / Creator:Grivaux, S., author.
Imprint:Providence : American Mathematical Society, [2021]
©2021
Description:v, 147 pages ; 26 cm.
Language:English
Series:Memoirs of the American Mathematical Society ; number 1315
Memoirs of the American Mathematical Society ; no. 1315.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12617354
Hidden Bibliographic Details
Other authors / contributors:Matheron, Étienne, author.
Menet, Q., 1988- author.
ISBN:9781470446635
1470446634
9781470464684
Notes:Includes bibliographical references.
Summary:"We solve a number of questions pertaining to the dynamics of linear operators on Hilbert spaces, sometimes by using Baire category arguments and sometimes by constructing explicit examples. In particular, we prove the following results. (i) A typical hypercyclic operator is not topologically mixing, has no eigenvalues and admits no non-trivial invariant measure, but is densely distributionally chaotic. (ii) A typical upper-triangular operator with coefficients of modulus 1 on the diagonal is ergodic in the Gaussian sense, whereas a typical operator of the form "diagonal with coefficients of modulus 1 on the diagonal plus backward unilateral weighted shift" is ergodic but has only countably many unimodular eigenvalues; in particular, it is ergodic but not ergodic in the Gaussian sense. (iii) There exist Hilbert space operators which are chaotic and U-frequently hypercyclic but not frequently hypercyclic, Hilbert space operators which are chaotic and frequently hypercyclic but not ergodic, and Hilbert space operators which are chaotic and topologically mixing but not U-frequently hypercyclic. We complement our results by investigating the descriptive complexity of some natural classes of operators defined by dynamical properties"--

MARC

LEADER 00000cam a2200000 i 4500
001 12617354
003 ICU
005 20210909134900.6
008 210409t20212021riu b 000 0 eng
010 |a 2021016944 
020 |a 9781470446635  |q (paperback) 
020 |a 1470446634  |q (paperback) 
020 |z 9781470464684  |q (pdf) 
035 |a (OCoLC)1228929217 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d OCLCF  |d MNU  |d OCLCO  |d XII  |d OCLCA  |d CGU 
042 |a pcc 
049 |a CGUA 
050 0 0 |a QA322.4  |b .G75 2021 
082 0 0 |a 515/.733  |2 23 
084 |a 47A16  |a 37A05  |a 54E52  |a 54H05  |2 msc 
100 1 |a Grivaux, S.,  |e author.  |0 http://id.loc.gov/authorities/names/n2021019227  |1 http://viaf.org/viaf/54144648299925415362 
245 1 0 |a Linear dynamical systems on Hilbert spaces :  |b typical properties and explicit examples /  |c S. Grivaux, É. Matheron, Q. Menet. 
264 1 |a Providence :  |b American Mathematical Society,  |c [2021] 
264 4 |c ©2021 
300 |a v, 147 pages ;  |c 26 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 1315 
504 |a Includes bibliographical references. 
520 |a "We solve a number of questions pertaining to the dynamics of linear operators on Hilbert spaces, sometimes by using Baire category arguments and sometimes by constructing explicit examples. In particular, we prove the following results. (i) A typical hypercyclic operator is not topologically mixing, has no eigenvalues and admits no non-trivial invariant measure, but is densely distributionally chaotic. (ii) A typical upper-triangular operator with coefficients of modulus 1 on the diagonal is ergodic in the Gaussian sense, whereas a typical operator of the form "diagonal with coefficients of modulus 1 on the diagonal plus backward unilateral weighted shift" is ergodic but has only countably many unimodular eigenvalues; in particular, it is ergodic but not ergodic in the Gaussian sense. (iii) There exist Hilbert space operators which are chaotic and U-frequently hypercyclic but not frequently hypercyclic, Hilbert space operators which are chaotic and frequently hypercyclic but not ergodic, and Hilbert space operators which are chaotic and topologically mixing but not U-frequently hypercyclic. We complement our results by investigating the descriptive complexity of some natural classes of operators defined by dynamical properties"--  |c Provided by publisher. 
650 0 |a Hilbert space.  |0 http://id.loc.gov/authorities/subjects/sh85060803 
650 0 |a Linear systems.  |0 http://id.loc.gov/authorities/subjects/sh85077183 
650 7 |a Hilbert space.  |2 fast  |0 (OCoLC)fst00956785 
650 7 |a Linear systems.  |2 fast  |0 (OCoLC)fst00999098 
700 1 |a Matheron, Étienne,  |e author.  |0 http://id.loc.gov/authorities/names/nb2009015846  |1 http://viaf.org/viaf/90490831 
700 1 |a Menet, Q.,  |d 1988-  |e author.  |0 http://id.loc.gov/authorities/names/n2021019230  |1 http://viaf.org/viaf/8161879203533611860 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1315. 
901 |a Analytic 
903 |a HeVa 
929 |a cat 
999 f f |i 13b0799c-57ea-5fb2-be1e-1d1715e407b5  |s 44ab797c-c975-5fbc-b22c-72b201f4fc04 
928 |t Library of Congress classification  |a QA1.A528 no.1315  |l ASR  |c ASR-SciASR  |i 12633576 
927 |t Library of Congress classification  |a QA1.A528 no.1315  |l ASR  |c ASR-SciASR  |g Analytic  |b A116851533  |i 10320512