Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functionals /

Saved in:
Bibliographic Details
Author / Creator:Feehan, Paul M. N., 1961- author.
Imprint:Providence : American Mathematical Society, [2020]
Description:xiii, 138 pages ; 26 cm
Language:English
Series:Memoirs of the American Mathematical Society, 0065-9266 ; Number 1302
Memoirs of the American Mathematical Society ; no. 1302.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12617355
Hidden Bibliographic Details
Other authors / contributors:Maridakis, Manousos, 1982- author.
ISBN:9781470443023
1470443023
9781470464035
Notes:Includes bibliographical references.
Summary:"We prove Lojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions using Sobolev spaces which impose minimal regularity requirements on pairs of connections and sections. The Lojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions generalize that of the pure Yang-Mills energy function due to the first author (Feehan, 2014) for base manifolds of arbitrary dimension and due to R"ade (1992, Proposition 7.2) for dimensions two and three"--

MARC

LEADER 00000cam a2200000 i 4500
001 12617355
003 ICU
005 20210909134639.5
008 210412s2020 riu b 000 0 eng
010 |a 2021016998 
016 7 |a BC06059445  |2 JP-ToKJK 
019 |a 1194956922  |a 1243509107 
020 |a 9781470443023  |q (paperback) 
020 |a 1470443023 
020 |z 9781470464035  |q (pdf) 
035 |a (OCoLC)1248598952  |z (OCoLC)1194956922  |z (OCoLC)1243509107 
040 |a DLC  |b eng  |e rda  |c DLC  |d UNBCA  |d OCLCF  |d LWU  |d YDX  |d UIU  |d PAU  |d DLC  |d OCLCO  |d CGU 
042 |a pcc 
049 |a CGUA 
050 0 0 |a QC174.52.Y37  |b F44 2020 
082 0 0 |a 530.14/35  |2 23 
084 |a 58E15  |a 57R57  |a 37D15  |a 58D27  |a 70S15  |a 81T13  |2 msc 
084 |a 413.5  |2 njb/10 
100 1 |a Feehan, Paul M. N.,  |d 1961-  |e author.  |0 http://id.loc.gov/authorities/names/n2015000075  |1 http://viaf.org/viaf/313287302 
245 1 0 |a Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functionals /  |c Paul M.N. Feehan, Manousos Maridakis. 
264 1 |a Providence :  |b American Mathematical Society,  |c [2020] 
300 |a xiii, 138 pages ;  |c 26 cm 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 0 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v Number 1302 
504 |a Includes bibliographical references. 
520 |a "We prove Lojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions using Sobolev spaces which impose minimal regularity requirements on pairs of connections and sections. The Lojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions generalize that of the pure Yang-Mills energy function due to the first author (Feehan, 2014) for base manifolds of arbitrary dimension and due to R"ade (1992, Proposition 7.2) for dimensions two and three"--  |c Provided by publisher. 
650 0 |a Yang-Mills theory.  |0 http://id.loc.gov/authorities/subjects/sh91002104 
650 7 |a Yang-Mills theory.  |2 fast  |0 (OCoLC)fst01182410 
700 1 |a Maridakis, Manousos,  |d 1982-  |e author.  |0 http://id.loc.gov/authorities/names/n2021019990  |1 http://viaf.org/viaf/67161816308427721205 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1302.  |x 0065-9266 
901 |a Analytic 
903 |a HeVa 
929 |a cat 
999 f f |i f1630639-a25b-517b-bdbb-362547808918  |s 318b0165-6dba-5a7c-afec-473b35923f03 
928 |t Library of Congress classification  |a QA1.A528 no.1302  |l ASR  |c ASR-SciASR  |i 12633570 
927 |t Library of Congress classification  |a QA1.A528 no.1302  |l ASR  |c ASR-SciASR  |g Analytic  |b A116851046  |i 10320504