Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields /

Saved in:
Bibliographic Details
Author / Creator:Berger, Lisa, 1969- author.
Imprint:Providence, RI : American Mathematical Society, [2020]
Description:v, 131 pages : illustrations ; 26 cm
Language:English
Series:Memoirs of the American Mathematical Society, 0065-9266 ; number 1295
Memoirs of the American Mathematical Society ; no. 1295.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12617470
Hidden Bibliographic Details
Other authors / contributors:Hall, Chris, 1975- author.
Pannekoek, René, author.
Park, Jennifer Mun Young, author.
Pries, Rachel, 1972- author.
Sharif, Shahed, 1977- author.
Silverberg, Alice, author.
Ulmer, Douglas, 1960- author.
ISBN:9781470442194
1470442191
9781470462536
Notes:"Forthcoming, volume 266, number 1295."
Includes bibliographical references.
Summary:"We study the Jacobian J of the smooth projective curve C of genus r-1 with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t), when p is prime and r [greater than or equal to] 2 is an integer prime to p. When q is a power of p and d is a positive integer, we compute the L-function of J over Fq(t1/d) and show that the Birch and Swinnerton-Dyer conjecture holds for J over Fq(t1/d). When d is divisible by r and of the form p[nu] + 1, and Kd := Fp([mu]d, t1/d), we write down explicit points in J(Kd), show that they generate a subgroup V of rank (r-1)(d-2) whose index in J(Kd) is finite and a power of p, and show that the order of the Tate-Shafarevich group of J over Kd is [J(Kd) : V ]2. When r > 2, we prove that the "new" part of J is isogenous over Fp(t) to the square of a simple abelian variety of dimension [phi](r)/2 with endomorphism algebra Z[[mu]r]+. For a prime with pr, we prove that J[](L) = {0} for any abelian extension L of Fp(t)"--

MARC

LEADER 00000cam a2200000 i 4500
001 12617470
003 ICU
005 20210909125320.3
008 200821s2020 riua b 000 0 eng c
010 |a 2020032015 
016 7 |a 020017808  |2 Uk 
020 |a 9781470442194  |q (paperback) 
020 |a 1470442191 
020 |z 9781470462536  |q (pdf) 
035 |a (OCoLC)1160098690 
040 |a LBSOR/DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d PAU  |d EAU  |d UKMGB  |d DLC  |d OCLCO  |d CGU 
042 |a pcc 
049 |a CGUA 
050 0 0 |a QA565  |b .B47 2020 
082 0 0 |a 516.3/53  |2 23 
084 |a 11G10  |a 11G30  |a 11G40  |a 14G05  |a 14G25  |a 14K15  |2 msc 
100 1 |a Berger, Lisa,  |d 1969-  |e author.  |0 http://id.loc.gov/authorities/names/no2020102328  |1 http://viaf.org/viaf/26159939437925251439 
245 1 0 |a Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields /  |c Lisa Berger, Chris Hall, Rene Pannekoek, Jennifer Park, Rachel Pries, Shahed Sharif, Alice Silverberg, Douglas Ulmer. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2020] 
300 |a v, 131 pages :  |b illustrations ;  |c 26 cm 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v number 1295 
500 |a "Forthcoming, volume 266, number 1295." 
504 |a Includes bibliographical references. 
505 0 |a The curve, explicit divisors, and relations -- Descent calculations -- Minimal regular model, local invariants, and domination by a product of curves -- Heights and the visible subgroup -- The L-function and the BSD conjecture -- Analysis of J[p] and NS(Xd)tor -- Index of the visible subgroup and the Tate-Shafarevich group -- Monodromy of ℓ-torsion and decomposition of the Jacobian. 
520 |a "We study the Jacobian J of the smooth projective curve C of genus r-1 with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t), when p is prime and r [greater than or equal to] 2 is an integer prime to p. When q is a power of p and d is a positive integer, we compute the L-function of J over Fq(t1/d) and show that the Birch and Swinnerton-Dyer conjecture holds for J over Fq(t1/d). When d is divisible by r and of the form p[nu] + 1, and Kd := Fp([mu]d, t1/d), we write down explicit points in J(Kd), show that they generate a subgroup V of rank (r-1)(d-2) whose index in J(Kd) is finite and a power of p, and show that the order of the Tate-Shafarevich group of J over Kd is [J(Kd) : V ]2. When r > 2, we prove that the "new" part of J is isogenous over Fp(t) to the square of a simple abelian variety of dimension [phi](r)/2 with endomorphism algebra Z[[mu]r]+. For a prime with pr, we prove that J[](L) = {0} for any abelian extension L of Fp(t)"--  |c Provided by publisher. 
650 0 |a Curves, Algebraic.  |0 http://id.loc.gov/authorities/subjects/sh85034916 
650 0 |a Abelian varieties.  |0 http://id.loc.gov/authorities/subjects/sh85000130 
650 0 |a Jacobians.  |0 http://id.loc.gov/authorities/subjects/sh85069214 
650 0 |a Birch-Swinnerton-Dyer conjecture.  |0 http://id.loc.gov/authorities/subjects/sh94001868 
650 0 |a Rational points (Geometry)  |0 http://id.loc.gov/authorities/subjects/sh2001008362 
650 0 |a Legendre's functions.  |0 http://id.loc.gov/authorities/subjects/sh85075778 
650 0 |a Finite fields (Algebra)  |0 http://id.loc.gov/authorities/subjects/sh85048351 
650 7 |a Abelian varieties  |2 fast  |0 (OCoLC)fst00794347 
650 7 |a Birch-Swinnerton-Dyer conjecture  |2 fast  |0 (OCoLC)fst00832903 
650 7 |a Curves, Algebraic  |2 fast  |0 (OCoLC)fst00885451 
650 7 |a Finite fields (Algebra)  |2 fast  |0 (OCoLC)fst00924905 
650 7 |a Jacobians  |2 fast  |0 (OCoLC)fst00981033 
650 7 |a Legendre's functions  |2 fast  |0 (OCoLC)fst00995590 
650 7 |a Rational points (Geometry)  |2 fast  |0 (OCoLC)fst01090266 
700 1 |a Hall, Chris,  |d 1975-  |e author.  |0 http://id.loc.gov/authorities/names/no2003053312  |1 http://viaf.org/viaf/21832161 
700 1 |a Pannekoek, René,  |e author.  |0 http://id.loc.gov/authorities/names/no2020102329  |1 http://viaf.org/viaf/305828410 
700 1 |a Park, Jennifer Mun Young,  |e author.  |0 http://id.loc.gov/authorities/names/no2014105571  |1 http://viaf.org/viaf/310621852 
700 1 |a Pries, Rachel,  |d 1972-  |e author.  |0 http://id.loc.gov/authorities/names/no2020102330  |1 http://viaf.org/viaf/4252149844954502960007 
700 1 |a Sharif, Shahed,  |d 1977-  |e author.  |0 http://id.loc.gov/authorities/names/no2020102331  |1 http://viaf.org/viaf/38159939449525251675 
700 1 |a Silverberg, Alice,  |e author.  |0 http://id.loc.gov/authorities/names/n85819986  |1 http://viaf.org/viaf/38384617 
700 1 |a Ulmer, Douglas,  |d 1960-  |e author.  |0 http://id.loc.gov/authorities/names/no2015046585  |1 http://viaf.org/viaf/315195219 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1295. 
901 |a Analytic 
903 |a HeVa 
929 |a cat 
999 f f |i af0d5ab2-2080-5c24-9629-0b09855d6cab  |s 0e61e1c0-808c-55df-bab4-74a3d44acab5 
928 |t Library of Congress classification  |a QA1.A528 no.1295  |l ASR  |c ASR-SciASR  |i 12633493 
927 |t Library of Congress classification  |a QA1.A528 no.1295  |l ASR  |c ASR-SciASR  |g Analytic  |b A116851389  |i 10320399