Deep learning in computational mechanics : an introductory course /

Saved in:
Bibliographic Details
Author / Creator:Kollmannsberger, Stefan, author.
Imprint:Cham : Springer, [2021]
©2021
Description:1 online resource (108 pages) : illustrations (some color).
Language:English
Series:Studies in computational intelligence ; volume 977
Studies in computational intelligence ; v. 977.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12631124
Hidden Bibliographic Details
Other authors / contributors:D'Angella, Davide, author.
Jokeit, Moritz, author.
Herrmann, Léon, author.
ISBN:9783030765873
3030765873
9783030765866
3030765865
Notes:Includes bibliographical references and index.
Description based upon print version of record.
Summary:This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning's fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book's main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature's evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python. .
Other form:Print version: Kollmannsberger, Stefan Deep Learning in Computational Mechanics Cham : Springer International Publishing AG,c2021 9783030765866
Standard no.:10.1007/978-3-030-76587-3

MARC

LEADER 00000cam a2200000Ii 4500
001 12631124
005 20210924092111.0
006 m o d
007 cr cnu---unuuu
008 210814s2021 sz a ob 001 0 eng d
019 |a 1263340097 
020 |a 9783030765873  |q (electronic bk.) 
020 |a 3030765873  |q (electronic bk.) 
020 |z 9783030765866 
020 |z 3030765865 
024 7 |a 10.1007/978-3-030-76587-3  |2 doi 
035 |a (OCoLC)1263873751  |z (OCoLC)1263340097 
035 9 |a (OCLCCM-CC)1263873751 
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d YDX  |d GW5XE  |d OCLCO  |d N$T  |d OCLCF 
049 |a MAIN 
050 4 |a Q325.5  |b .D44 2021 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
100 1 |a Kollmannsberger, Stefan,  |e author. 
245 1 0 |a Deep learning in computational mechanics :  |b an introductory course /  |c Stefan Kollmannsberger, Davide D'Angella, Moritz Jokeit, Leon Herrmann. 
264 1 |a Cham :  |b Springer,  |c [2021] 
264 4 |c ©2021 
300 |a 1 online resource (108 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies in computational intelligence ;  |v volume 977 
504 |a Includes bibliographical references and index. 
520 |a This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning's fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book's main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature's evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python. . 
505 0 |a Introduction -- Fundamental Concepts of Machine Learning -- Neural Networks -- Machine Learning in Physics and Engineering -- Physics-informed Neural Networks -- Deep Energy Method. 
588 |a Description based upon print version of record. 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 0 |a Neural networks (Computer science)  |0 http://id.loc.gov/authorities/subjects/sh90001937 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
655 4 |a Electronic books. 
700 1 |a D'Angella, Davide,  |e author. 
700 1 |a Jokeit, Moritz,  |e author. 
700 1 |a Herrmann, Léon,  |e author. 
776 0 8 |i Print version:  |a Kollmannsberger, Stefan  |t Deep Learning in Computational Mechanics  |d Cham : Springer International Publishing AG,c2021  |z 9783030765866 
830 0 |a Studies in computational intelligence ;  |v v. 977.  |0 http://id.loc.gov/authorities/names/no2005104439 
903 |a HeVa 
929 |a oclccm 
999 f f |i 62c9e6f8-2575-5ce9-a726-e2728e976d30  |s 5247bda7-a604-555b-b167-89db327e3720 
928 |t Library of Congress classification  |a Q325.5 .D44 2021  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-76587-3  |z Springer Nature  |g ebooks  |i 12654066