Data science and SDGs : challenges, opportunities and realities /

Saved in:
Bibliographic Details
Imprint:Singapore : Springer, 2021.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12631169
Hidden Bibliographic Details
Other authors / contributors:Sinha, Bikas Kumar, editor.
Mollah, Md. Nurul Haque, editor.
International Conference on Data Science and Sustainable Development Goals (7th : 2019 : Rajshahi, Bangladesh)
ISBN:9789811619199
9811619190
9811619182
9789811619182
Notes:Online resource; title from PDF title page (SpringerLink, viewed August 20, 2021).
Summary:The book presents contributions on statistical models and methods applied, for both data science and SDGs, in one place. Measuring and controlling data of SDGs, data driven measurement of progress needs to be distributed to stakeholders. In this situation, the techniques used in data science, specially, in the big data analytics, play an important role rather than the traditional data gathering and manipulation techniques. This book fills this space through its twenty contributions. The contributions have been selected from those presented during the 7th International Conference on Data Science and Sustainable Development Goals organized by the Department of Statistics, University of Rajshahi, Bangladesh; and cover topics mainly on SDGs, bioinformatics, public health, medical informatics, environmental statistics, data science and machine learning. The contents of the volume would be useful to policymakers, researchers, government entities, civil society, and nonprofit organizations for monitoring and accelerating the progress of SDGs.
Other form:Original 9811619182 9789811619182
Standard no.:10.1007/978-981-16-1919-9

MARC

LEADER 00000cam a2200000Ia 4500
001 12631169
006 m o d
007 cr |n|||||||||
008 210816s2021 si o 100 0 eng d
005 20240624203658.3
020 |a 9789811619199  |q (electronic bk.) 
020 |a 9811619190  |q (electronic bk.) 
020 |z 9811619182 
020 |z 9789811619182 
024 7 |a 10.1007/978-981-16-1919-9  |2 doi 
035 |a (OCoLC)1264072750 
035 9 |a (OCLCCM-CC)1264072750 
040 |a YDX  |b eng  |c YDX  |d GW5XE  |d EBLCP  |d OCLCO  |d OCLCF 
049 |a MAIN 
050 4 |a HB137 
072 7 |a PBT  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a K  |2 thema 
245 0 0 |a Data science and SDGs :  |b challenges, opportunities and realities /  |c Bikas Kumar Sinha, Md. Nurul Haque Mollah, editors. 
260 |a Singapore :  |b Springer,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Chapter 1: SDGs in Bangladesh: Implementation Challenges & Way Forward -- Chapter 2: Some Models and Their Extensions for Longitudinal Analyses -- Chapter 3: Association of IL-6 Gene rs1800796 Polymorphism with Cancer Risk: A Meta-Analysis -- Chapter 4: Two Level Logistic Regression Analysis of Factors Influencing Dual form of Malnutrition in Mother-child Pairs: A Household Study in Bangladesh -- Chapter 5: Divide and Recombine Approach for Analysis of Failure Data Using Parametric Regression Model -- Chapter 6: Performance of different data mining methods for predicting rainfall of Rajshahi district, Bangladesh -- Chapter 7: Generalized Vector Auto-regression Controlling Intervention and Volatility for Climatic Variables -- Chapter 8: Experimental Designs for fMRI Studies in Small Samples -- Chapter 9: Bioinformatic Analysis of Differentially Expressed Genes (DEGs) Detected from RNA-Sequencing Profiles of Mouse Striatum -- Chapter 10: Level of Serum High-sensitivity C-reactive protein Predicts Atherosclerosis and Coronary Artery Disease in Hyperglycemic Patients -- Chapter 11: Identification of Outliers in Gene Expression Data -- Chapter 12: Selecting Covariance Structure to Analyze Longitudinal Data: A Study to Model the Body Mass Index of Primary School Going Children in Bangladesh -- Chapter 13: Statistical Analysis of Various Optimal Latin Hypercube Designs -- Chapter 14: Erlang Loss Formulas: An Elementary Derivation -- Chapter 15: Machine Learning, Regression and Numerical Optimization. 
520 |a The book presents contributions on statistical models and methods applied, for both data science and SDGs, in one place. Measuring and controlling data of SDGs, data driven measurement of progress needs to be distributed to stakeholders. In this situation, the techniques used in data science, specially, in the big data analytics, play an important role rather than the traditional data gathering and manipulation techniques. This book fills this space through its twenty contributions. The contributions have been selected from those presented during the 7th International Conference on Data Science and Sustainable Development Goals organized by the Department of Statistics, University of Rajshahi, Bangladesh; and cover topics mainly on SDGs, bioinformatics, public health, medical informatics, environmental statistics, data science and machine learning. The contents of the volume would be useful to policymakers, researchers, government entities, civil society, and nonprofit organizations for monitoring and accelerating the progress of SDGs. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed August 20, 2021). 
650 0 |a Economics  |x Statistical methods  |v Congresses. 
650 0 |a Sustainable development  |x Statistical methods  |v Congresses. 
650 7 |a Economics  |x Statistical methods.  |2 fast  |0 (OCoLC)fst00902215 
650 7 |a Sustainable development  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01139760 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
700 1 |a Sinha, Bikas Kumar,  |e editor. 
700 1 |a Mollah, Md. Nurul Haque,  |e editor. 
711 2 |a International Conference on Data Science and Sustainable Development Goals  |n (7th :  |d 2019 :  |c Rajshahi, Bangladesh) 
776 0 8 |c Original  |z 9811619182  |z 9789811619182  |w (OCoLC)1242465656 
903 |a HeVa 
929 |a oclccm 
999 f f |i ed8d051a-12b9-5b98-999e-370792bd688e  |s 65d900a4-71c6-5b09-8b31-713d8fa9721c 
928 |t Library of Congress classification  |a HB137  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-16-1919-9  |z Springer Nature  |g ebooks  |i 12654112