One-dimensional turbulence and the stochastic Burgers equation /

Saved in:
Bibliographic Details
Author / Creator:Boritchev, Alexandre, 1986- author.
Imprint:Providence, Rhode Island : American Mathematical Society, [2021]
©2021
Description:vii, 192 pages : illustrations ; 26 cm.
Language:English
Series:Mathematical surveys and monographs, 0076-5376 ; volume 255
Mathematical surveys and monographs ; no. 255.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12634191
Hidden Bibliographic Details
Other authors / contributors:Kuksin, Sergej B., 1955- author.
ISBN:9781470464363
1470464365
9781470465643
Notes:Includes bibliographical references (pages 183-190) and index.
Summary:This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3-law, and the Kolmogorov-Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L₁-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.

MARC

LEADER 00000cam a2200000 i 4500
001 12634191
003 ICU
005 20211025032632.0
008 210212t20212021riua b 001 0 eng
010 |a  2021004451 
040 |a LBSOR/DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d OCLCF  |d YDX  |d OCLCO  |d KSU  |d MTG  |d OCLCO  |d OBE  |d OCLCO  |d CGU 
020 |a 9781470464363  |q paperback 
020 |a 1470464365  |q paperback 
020 |z 9781470465643  |q electronic book 
035 |a (OCoLC)1240266069 
042 |a pcc 
050 0 0 |a QA274.25  |b .B67 2021 
082 0 0 |a 515/.353  |b B7346o  |2 23 
084 |a 60H15  |a 35L65  |a 35Q35  |a 37A25  |a 76F02  |a 76F25  |2 msc 
049 |a CGUA 
100 1 |a Boritchev, Alexandre,  |d 1986-  |e author.  |0 http://id.loc.gov/authorities/names/no2021020628  |1 http://viaf.org/viaf/299458528 
245 1 0 |a One-dimensional turbulence and the stochastic Burgers equation /  |c Alexandre Boritchev, Sergei Kuksin. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [2021] 
264 4 |c ©2021 
300 |a vii, 192 pages :  |b illustrations ;  |c 26 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 1 |a Mathematical surveys and monographs,  |x 0076-5376 ;  |v volume 255 
504 |a Includes bibliographical references (pages 183-190) and index. 
505 0 |a Basic results -- Asymptotically sharp estimates for Sobolev norms of solutions -- Mixing in the stochastic Burgers equation -- Stochastic Burgers equation in the space L₁ -- Notes and comments, I -- Turbulence and burgulence -- Rigorous burgulence -- The inviscid limit and inviscid burgulence -- Notes and comments, II -- Miscellanea -- Appendices -- Solutions for selected exercises. 
520 |a This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3-law, and the Kolmogorov-Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L₁-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.  |c Publisher. 
650 0 |a Stochastic partial differential equations.  |0 http://id.loc.gov/authorities/subjects/sh87001697 
650 0 |a Burgers equation.  |0 http://id.loc.gov/authorities/subjects/sh85018060 
650 0 |a Turbulence  |x Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh2008113041 
650 7 |a Burgers equation.  |2 fast  |0 (OCoLC)fst00841724 
650 7 |a Stochastic partial differential equations.  |2 fast  |0 (OCoLC)fst01133516 
650 7 |a Turbulence  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01159216 
650 7 |a Probability theory and stochastic processes {For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX} -- Stochastic analysis [See also 58J65] -- Stochastic partial differentia.  |2 msc 
650 7 |a Partial differential equations -- Hyperbolic equations and systems [See also 58J45] -- Conservation laws.  |2 msc 
650 7 |a Partial differential equations -- Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05] -- PDEs in connection with fluid mechanics.  |2 msc 
650 7 |a Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX] -- Ergodic theory [See also 28Dxx] -- Ergodicity, mixing, rates of mixing.  |2 msc 
650 7 |a Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX} -- Turbulence [See also 37-XX, 60Gxx, 60Jxx] -- Fundamentals.  |2 msc 
650 7 |a Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX} -- Turbulence [See also 37-XX, 60Gxx, 60Jxx] -- Turbulent transport, mixing.  |2 msc 
700 1 |a Kuksin, Sergej B.,  |d 1955-  |e author.  |0 http://id.loc.gov/authorities/names/n93089555  |1 http://viaf.org/viaf/2564209 
830 0 |a Mathematical surveys and monographs ;  |v no. 255. 
903 |a HeVa 
929 |a cat 
999 f f |i 5a6ae17e-0ce2-5b27-9998-7d163b88d2b8  |s 7b1fc583-3cfb-5af8-bf7b-4c09a5a87a89 
928 |t Library of Congress classification  |a QA274.25.B67 2021  |l JCL  |c JCL-Sci  |i 12681398 
927 |t Library of Congress classification  |a QA274.25.B67 2021  |l JCL  |c JCL-Sci  |g SEPS  |b 117242486  |i 10334170