Sustainable water : resources, management and challenges /

Saved in:
Bibliographic Details
Imprint:New York : Nova Science Publishers, [2020]
Description:1 online resource (viii, 259 pages) : illustrations (some color).
Language:English
Series:Water resource planning, development and management
Water resource planning, development and management series.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12650551
Hidden Bibliographic Details
Other authors / contributors:Gude, Veera Gnaneswar, 1978- editor.
Venkataramana, Gadhamshetty, 1977- editor.
Kandiah, Ramanitharan, editor.
ISBN:9781536173369
1536173363
9781536173352
Notes:Includes bibliographical references and index.
Description based on online resource; title from digital title page (viewed on July 08, 2020).
Summary:"Population growth, increasing living standards, and rapidly changing climate have resulted in an increasing demand for freshwater, accelerating the water degradation challenges. There is a compelling need to minimize water consumption and develop approaches to effectively manage existing water resources. On a positive note, water resource management strategies discussed in this book present innovative ways to conserve both quality and quantity. Chapter 1 discusses decentralized water management approaches for intervening the urban water cycle to minimize the environmental and socioeconomic impacts. This chapter concludes with a need to use a suite of tools based on decision support systems for managing urban water resources. Chapter 2 discusses the need for assessing suitability of various types of models for a specific scenario based on the required level of complexity. This chapter discusses in detail the underlying criteria behind model selection, validation, and uncertainty analysis. Urban watersheds can be more challenging compared to natural watersheds. The urban watersheds include parking lots, roads, and developed structures, all of which contribute to a myriad of anthropogenic pollutants through stormwater runoff. Computer-based models can be used to study water quality issues and to develop a plan to manage watershed level resources. Chapter 3 compares pros and cons of the state-of-the-art watershed models used for managing water resources. Numerical simulations can be performed to compare the current and future water quality scenarios of a given watershed and to estimate the impact of potential water resource management strategies. Chapter 4 presents a case study of an urban region in Hanoi, Vietnam. Water evaluation and planning simulation tool was used to predict the trends and drivers of wastewater generation. Considering rapidly changing climate and associated weather impacts, it is critical to secure water resources in addition to dealing with the water quality issues. Chapter 5 suggests that climate change models and watershed and precipitation models should be jointly used in order to capture uncertainties in ecological functions, energy and food production and water supply sources. Chapter 6 presents a water use estimation and management tool that examines the effect of climate change and drought conditions on water supplies to ensure adequate buffalo forage. Sustaining both buffalo forage and water supplies during drought conditions requires preparedness and adaptation in response to unfavorable conditions. Finally, water reuse can alleviate the stress on available water resources. For example, effluents from wastewater treatment plants and desalination plants can be treated and reused for managing water crisis. Chapter 7 emphasizes that it is critical to optimize both economical and sustainability parameters during treatment of wastewater effluents and desalination concentrate. In certain cases, valuable metals can be recovered from the concentrate"--
Other form:Print version: Sustainable water New York : Nova Science Publishers, 2020. 9781536173352

MARC

LEADER 00000cam a2200000 i 4500
001 12650551
006 m o d
007 cr |||||||||||
008 200109s2020 nyua ob 001 0 eng
005 20240702144237.4
010 |a  2020000196 
019 |a 1159163988 
020 |a 9781536173369  |q electronic book 
020 |a 1536173363  |q electronic book 
020 |z 9781536173352  |q hardcover 
035 |a (OCoLC)1149217527  |z (OCoLC)1159163988 
035 9 |a (OCLCCM-CC)1149217527 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d OCLCQ  |d OCLCF  |d N$T  |d YDX  |d EBLCP 
042 |a pcc 
049 |a MAIN 
050 0 4 |a TC405  |b .S87 2020 
245 0 0 |a Sustainable water :  |b resources, management and challenges /  |c Veera Gnaneswar Gude, PhD, Venkataramana Gadhamshetty, PhD, Ramanitharan Kandiah, PhD, editors. 
264 1 |a New York :  |b Nova Science Publishers,  |c [2020] 
300 |a 1 online resource (viii, 259 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Water resource planning, development and management 
504 |a Includes bibliographical references and index. 
520 |a "Population growth, increasing living standards, and rapidly changing climate have resulted in an increasing demand for freshwater, accelerating the water degradation challenges. There is a compelling need to minimize water consumption and develop approaches to effectively manage existing water resources. On a positive note, water resource management strategies discussed in this book present innovative ways to conserve both quality and quantity. Chapter 1 discusses decentralized water management approaches for intervening the urban water cycle to minimize the environmental and socioeconomic impacts. This chapter concludes with a need to use a suite of tools based on decision support systems for managing urban water resources. Chapter 2 discusses the need for assessing suitability of various types of models for a specific scenario based on the required level of complexity. This chapter discusses in detail the underlying criteria behind model selection, validation, and uncertainty analysis. Urban watersheds can be more challenging compared to natural watersheds. The urban watersheds include parking lots, roads, and developed structures, all of which contribute to a myriad of anthropogenic pollutants through stormwater runoff. Computer-based models can be used to study water quality issues and to develop a plan to manage watershed level resources. Chapter 3 compares pros and cons of the state-of-the-art watershed models used for managing water resources. Numerical simulations can be performed to compare the current and future water quality scenarios of a given watershed and to estimate the impact of potential water resource management strategies. Chapter 4 presents a case study of an urban region in Hanoi, Vietnam. Water evaluation and planning simulation tool was used to predict the trends and drivers of wastewater generation. Considering rapidly changing climate and associated weather impacts, it is critical to secure water resources in addition to dealing with the water quality issues. Chapter 5 suggests that climate change models and watershed and precipitation models should be jointly used in order to capture uncertainties in ecological functions, energy and food production and water supply sources. Chapter 6 presents a water use estimation and management tool that examines the effect of climate change and drought conditions on water supplies to ensure adequate buffalo forage. Sustaining both buffalo forage and water supplies during drought conditions requires preparedness and adaptation in response to unfavorable conditions. Finally, water reuse can alleviate the stress on available water resources. For example, effluents from wastewater treatment plants and desalination plants can be treated and reused for managing water crisis. Chapter 7 emphasizes that it is critical to optimize both economical and sustainability parameters during treatment of wastewater effluents and desalination concentrate. In certain cases, valuable metals can be recovered from the concentrate"--  |c Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on July 08, 2020). 
505 0 |a Intro -- Contents -- Preface -- Chapter 1 -- Integrated Approaches toward Sustainable Urban Water Resources Management -- Abstract -- Introduction -- Water Resource Challenges in Cities -- Conventional Water Resource Management -- Integrated Urban Water Management (IUWM) -- Decentralized Water Management -- Water Sensitive Urban Design -- Application of GIS for Water Resource Management -- Conclusion -- References -- Chapter 2 -- Water Resources Modeling: Model Selection, Validation and Uncertainty Analysis -- Abstract -- Introduction -- Model Types 
505 8 |a Different Types of Equations in the Hydrologic System -- Mass Balance Equations -- Empirical Equations -- Analytical Equations -- Numerical Equations -- Categories of Hydrologic Models -- Mass Balance Screening Models -- GIS Based Screening Models -- Surface Water Models -- Subsurface Models -- Vadose Zone Models -- Groundwater Models -- Integrated Watershed Models -- Model Selection Process -- Introduction -- Factors to Consider in Model Selection -- Status of Watershed -- Regulatory and Environmental Issues -- Hydrologic, Chemical, and Physical Processes -- Relative Costs of a Model 
505 8 |a Information Needs -- Pollutant Fate and Transport Processes -- Selecting Models that Incorporate the Appropriate Pollutant Transport Mechanisms -- Model Parsimony and Transparency -- Model Calibration, Validation and Uncertainty Analysis -- Introduction -- Model Setup -- Model Initialization -- Model Calibration -- Sensitivity Analysis -- Model Validation -- Model Evaluation -- Model Uncertainty -- Conclusion -- References -- Chapter 3 -- Computer Tools for Urban Hydrology and Water Quality Management -- Abstract -- Introduction -- Classification of Urban Watershed Models -- Model Descriptions 
505 8 |a Simple Models/Tools -- Complex Models -- Storm Water Management Model (SWMM) -- Hydrological Simulation Program -- Fortran (HSPF) -- Windows Technical Release-55 (TR-55) -- MIKE URBAN -- The Hydrologic Modeling System (HEC-HMS) -- Urban Volume and Quality (UVQ) -- Model for Urban Stormwater Improvement Conceptualisation (MUSIC) -- Storage, Treatment, Overflow, Runoff Model (STORM) -- Source Loading and Management Model (WinSLAMM) -- System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN) -- Gridded Surface Subsurface Hydrologic Analysis (GSSHA) -- Watershed Management System (WMS) 
505 8 |a New Generation Urban Watershed Models -- Conclusion -- References -- Chapter 4 -- Numerical Simulation to Quantify Present Status and Future Prediction of Water Quality of To-Lich River, Hanoi, Vietnam -- Abstract -- Introduction -- Study Area and Methodology -- Study Area -- Basic Information Regarding the Model and Data Requirement -- Model Setup -- Result and Discussions -- Precipitation Change -- Population Growth -- Water Quality -- Model Performance Evaluation -- Scenario Analyses -- Conclusion and Recommendations -- References -- Chapter 5 
650 0 |a Water resources development.  |0 http://id.loc.gov/authorities/subjects/sh85145612 
650 0 |a Water reuse.  |0 http://id.loc.gov/authorities/subjects/sh85145631 
650 0 |a Sustainable engineering.  |0 http://id.loc.gov/authorities/subjects/sh2006001869 
650 0 |a Water-supply engineering.  |0 http://id.loc.gov/authorities/subjects/sh85145657 
650 0 |a Water conservation.  |0 http://id.loc.gov/authorities/subjects/sh85145542 
650 7 |a Sustainable engineering.  |2 fast  |0 (OCoLC)fst01739808 
650 7 |a Water conservation.  |2 fast  |0 (OCoLC)fst01171608 
650 7 |a Water resources development.  |2 fast  |0 (OCoLC)fst01171955 
650 7 |a Water reuse.  |2 fast  |0 (OCoLC)fst01172046 
650 7 |a Water-supply engineering.  |2 fast  |0 (OCoLC)fst01172443 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
700 1 |a Gude, Veera Gnaneswar,  |d 1978-  |e editor.  |0 http://id.loc.gov/authorities/names/no2008061252 
700 1 |a Venkataramana, Gadhamshetty,  |d 1977-  |e editor.  |0 http://id.loc.gov/authorities/names/no2008027833 
700 1 |a Kandiah, Ramanitharan,  |e editor.  |0 http://id.loc.gov/authorities/names/no2009064349 
776 0 8 |i Print version:  |t Sustainable water  |d New York : Nova Science Publishers, 2020.  |z 9781536173352  |w (DLC) 2020000195 
830 0 |a Water resource planning, development and management series.  |0 http://id.loc.gov/authorities/names/no2010013380 
903 |a HeVa 
929 |a oclccm 
999 f f |i c2ccfa5b-e8f4-5a4f-9012-19c965ef799e  |s 18d92325-8164-5ccb-b373-dec61eaa17d8 
928 |t Library of Congress classification  |a TC405 .S87 2020  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=2334580  |z eBooks on EBSCOhost  |g ebooks  |i 12699084