Advanced diffusion encoding methods in MRI /

Saved in:
Bibliographic Details
Imprint:Cambridge : Royal Society of Chemistry, [2020]
Description:1 online resource (436 pages)
Language:English
Series:New developments in NMR ; 24
New developments in NMR ; no. 24.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12651918
Hidden Bibliographic Details
Other authors / contributors:Topgaard, Daniel, editor.
ISBN:9781788019910
1788019911
9781788019927
178801992X
9781788017268
1788017269
Notes:Includes index.
Title details screen.
Summary:The medical MRI community is by far the largest user of diffusion NMR techniques and this book captures the current surge of methods and provides a primary source to aid adoption in this field.
Other form:Print version: Advanced diffusion encoding methods in MRI. Cambridge : Royal Society of Chemistry, [2020] 1788017269 9781788017268
Table of Contents:
  • Cover
  • Preface
  • Contents
  • Chapter 1 Translational Motion of Water in Biological Tissues
  • A Brief Primer
  • 1.1 Introduction
  • 1.2 A Molecular Perspective on Water Diffusion in Biological Tissues
  • 1.2.1 Biomembranes
  • 1.2.2 Macromolecules
  • 1.3 Experimental Data on Biomembrane Permeability and Macromolecular Obstruction
  • 1.4 Diffusivity, Restriction, Anisotropy, Exchange, and Flow
  • 1.5 Summary
  • Acknowledgements
  • References
  • Chapter 2 Diffusion Encoding with General Gradient Waveforms
  • 2.1 Introduction
  • 2.2 Stochastic Processes
  • 2.2.1 Probability Distributions
  • 2.2.2 Markov Process
  • 2.2.3 Moments and Cumulants
  • 2.3 NMR Signal and Spin Phase
  • 2.3.1 Phase of a Single Spin Contribution
  • 2.3.2 Spin-echo and the Effective Gradient Waveform
  • 2.3.3 NMR Signal for an Ensemble of Spins
  • 2.3.4 Non-moving Spins
  • 2.3.5 Spin-echo Condition
  • 2.3.6 Spin-echo for Spins Undergoing Translational Motion
  • 2.3.7 Coherent Motion
  • Single Ensemble
  • 2.3.8 Coherent Motion
  • Multiple Sub-ensembles
  • 2.3.9 Spin Phase as a Function of Displacement or Velocity
  • 2.4 Stochastic Motion
  • 2.4.1 Spin Position as a Stationary Markov Process
  • 2.4.2 Average Propagator with Short Gradient Pulses
  • 2.4.3 Arbitrary Gradient Waveforms and Multiple Propagators
  • 2.4.4 Double Encoding with a Mixing Block
  • 2.4.5 Approximations for Spin-echo Attenuation
  • 2.4.6 Spin-echo as a Characteristic Functional of a Stochastic Process
  • 2.4.7 Cross-correlation Tensors and the Gaussian Approximation of the Cumulant Expansion
  • 2.4.8 Multi-Gaussian Diffusion in the Low-b Regime
  • 2.5 Frequency-domain Analysis with the Gaussian Approximation of the Cumulant Expansion
  • 2.5.1 Encoding and Diffusion Spectra
  • 2.5.2 Directional Average Signal Attenuation due to Time-dependent Diffusion in Multicompartment Systems
  • 2.5.3 Mean Spectrum and Spectral Anisotropy
  • 2.5.4 Signal Attenuation for Directionally Averaged Multi-compartment Systems
  • 2.5.5 Case of Axisymmetric Diffusion Spectra
  • 2.5.6 Case of Gaussian Diffusion
  • 2.5.7 Spectral Tuning of b-Tensors
  • 2.5.8 Effect of Spectral Anisotropy
  • 2.5.9 Low-frequency Expansion
  • 2.6 Conclusions
  • Acknowledgements
  • References
  • Chapter 3 Diffusion Anisotropy and Tensor-valued Encoding
  • 3.1 Introduction
  • 3.2 Symmetric Tensors
  • 3.2.1 Haeberlen Convention for Tensor Size and Shape
  • 3.2.2 Measures of Tensor Anisotropy
  • 3.2.3 Positive-(Semi)definiteness
  • 3.3 Distributions of Axisymmetric Diffusion Tensors
  • 3.3.1 Normalization
  • 3.3.2 Low-dimensional Projections
  • 3.3.3 Statistical Descriptors
  • 3.3.4 Component Binning
  • 3.3.5 Ensemble-averaging
  • 3.4 Tensor-valued Diffusion Encoding
  • 3.4.1 Diffusion Weighting, q-Space Trajectories, and b-Tensor
  • 3.4.2 Computing the Frobenius Inner Product
  • 3.4.3 Qualitative Interpretation
  • 3.5 Estimation of Statistical Descriptors