Multivariate data analysis on matrix manifolds (with Manopt) /

Saved in:
Bibliographic Details
Author / Creator:Trendafilov, N.T. (Nickolay T.), author.
Imprint:Cham : Springer, [2021]
©2021
Description:1 online resource : illustrations (chiefly color).
Language:English
Series:Springer series in the data sciences, 2365-5682
Springer series in the data sciences.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12659839
Hidden Bibliographic Details
Other authors / contributors:Gallo, Michele, author.
ISBN:9783030769741
3030769747
9783030769734
3030769739
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed September 27, 2021).
Summary:This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number of exercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data mining and data science, as well as theoretical computer science, machine learning and optimization. It is assumed that the readers have some familiarity with MDA and some experience with matrix analysis, computing, and optimization. .
Other form:Original 3030769739 9783030769734
Standard no.:10.1007/978-3-030-76974-1

MARC

LEADER 00000cam a2200000Ii 4500
001 12659839
005 20211029090527.0
006 m o d
007 cr |n|||||||||
008 210917s2021 sz a ob 001 0 eng d
020 |a 9783030769741  |q (electronic bk.) 
020 |a 3030769747  |q (electronic bk.) 
020 |z 9783030769734 
020 |z 3030769739 
024 7 |a 10.1007/978-3-030-76974-1  |2 doi 
035 |a (OCoLC)1268326111 
035 9 |a (OCLCCM-CC)1268326111 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d OCLCO  |d EBLCP  |d OCLCF 
049 |a MAIN 
050 4 |a QA278  |b .T74 2021 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
100 1 |a Trendafilov, N.T.  |q (Nickolay T.),  |e author.  |0 http://id.loc.gov/authorities/names/no2019123295 
245 1 0 |a Multivariate data analysis on matrix manifolds (with Manopt) /  |c Nickolay Trendafilov, Michele Gallo. 
264 1 |a Cham :  |b Springer,  |c [2021] 
264 4 |c ©2021 
300 |a 1 online resource :  |b illustrations (chiefly color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer series in the data sciences,  |x 2365-5682 
504 |a Includes bibliographical references and index. 
520 |a This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number of exercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data mining and data science, as well as theoretical computer science, machine learning and optimization. It is assumed that the readers have some familiarity with MDA and some experience with matrix analysis, computing, and optimization. . 
505 0 |a Introduction -- Matrix analysis and differentiation -- Matrix manifolds in MDA -- Principal component analysis (PCA) -- Factor analysis (FA) -- Procrustes analysis (PA) -- Linear discriminant analysis (LDA) -- Canonical correlation analysis (CCA) -- Common principal components (CPC) -- Metric multidimensional scaling (MDS) and related methods -- Data analysis on simplexes. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 27, 2021). 
650 0 |a Multivariate analysis.  |0 http://id.loc.gov/authorities/subjects/sh85088390 
650 0 |a Multivariate analysis  |x Computer programs.  |0 http://id.loc.gov/authorities/subjects/sh85088391 
650 0 |a Manifolds (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85080549 
650 7 |a Manifolds (Mathematics)  |2 fast  |0 (OCoLC)fst01007726 
650 7 |a Multivariate analysis.  |2 fast  |0 (OCoLC)fst01029105 
650 7 |a Multivariate analysis  |x Computer programs.  |2 fast  |0 (OCoLC)fst01029106 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Gallo, Michele,  |e author. 
776 0 8 |c Original  |z 3030769739  |z 9783030769734  |w (OCoLC)1247833892 
830 0 |a Springer series in the data sciences.  |x 2365-5682  |0 http://id.loc.gov/authorities/names/no2016032158 
903 |a HeVa 
929 |a oclccm 
999 f f |i 0e24a6d2-4b4b-56c3-867b-5259ec79c240  |s 7b02e702-0ebc-550f-9738-87264bdf1291 
928 |t Library of Congress classification  |a QA278 .T74 2021  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-76974-1  |z Springer Nature  |g ebooks  |i 12708427