Electrochemical energy conversion and storage /
Saved in:
Author / Creator: | Holze, R. (Rudolf), 1954- author. |
---|---|
Imprint: | Weinheim, Germany : Wiley-VCH, [2022] |
Description: | xiv, 415 pages : illustrations ; 25 cm |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/12734018 |
Table of Contents:
- Foreword
- Preface
- 1. Processes and Applications of Energy Conversion and Storage
- 2. Electrochemical Processes and Systems
- 2.1. Parasitic Reactions
- 2.2. Self-discharge
- 2.3. Device Deterioration
- 2.3.1. Aging
- 3. Thermodynamics of Electrochemical Systems
- 4. Kinetics of Electrochemical Energy Conversion Processes
- 4.1. Steps of Electrode Reactions and Overpotentials
- 4.2. Transport
- 4.3. Charge Transfer
- 4.4. Overpotentials
- 4.5. Diffusion
- 4.6. Further Overpotentials
- 5. Electrodes and Electrolytes
- 5.1. Recycling
- 6. Experimental Methods
- 6.1. Battery Tester
- 6.2. Current-Potential Measurements
- 6.3. Charge/Discharge Measurements
- 6.4. Battery Charging
- 6.5. Linear Scan and Cyclic Voltammetry
- 6.6. Impedance Measurements
- 6.7. Galvanostatic Intermittent Titration Technique (GITT)
- 6.8. Potentiostatic Intermittent Titration Technique (PITT)
- 6.9. Step Potential Electrochemical Spectroscopy (SPECS)
- 6.10. Electrochemical Quartz Crystal Microbalance (EQCM)
- 6.11. Non-electrochemical Methods
- 6.11.1. Solid-state Nuclear Magnetic Resonance
- 6.11.2. Gas Adsorption Measurements
- 6.11.3. Microscopies
- 6.11.4. Thermal Measurements
- 6.11.5. Modeling
- 7. Primary Systems
- 7.1. Aqueous Systems
- 7.1.1. Zinc-Carbon Battery
- 7.1.2. Alkaline Zn//MnO 2 Battery
- 7.1.3. Zn//HgO Battery
- 7.1.4. Zn//AgO Battery
- 7.1.5. Cd//AgO Batteries
- 7.1.6. Mg//MnO 2 Batteries
- 7.2. Nonaqueous Systems
- 7.2.1. Primary Lithium Batteries
- 7.2.2. Li//MnO 2
- 7.2.3. Li//Bi 2 O 3
- 7.2.4. Li//CuO
- 7.2.5. Li//V 2 O 5 , Li//Ag 2 V 4 O 11 , and Li//CSVO
- 7.2.6. Li//CuS
- 7.2.7. Li//FeS 2
- 7.2.8. Li//CF x Primary Battery
- 7.2.9. Li//I 2
- 7.2.10. Li//SO 2
- 7.2.11. Li//SOCl 2
- 7.2.12. Li//SO2Cl 2
- 7.2.13. Li//Oxyhalide Primary Battery
- 7.3. Metal-Air Systems
- 7.3.1. Aqueous Metal-Air Primary Batteries
- 7.3.2. Nonaqueous Metal-Air Batteries
- 7.4. Reserve Batteries
- 7.4.1. Seawater-activated Batteries
- 7.4.2. High Power Activated Batteries
- 8. Secondary Systems
- 8.1. Aqueous Systems
- 8.1.1. Lead-Acid
- 8.1.2. Lead Grid
- 8.1.3. Ni-based Secondary Batteries
- 8.1.4. Aqueous Rechargeable Lithium Batteries
- 8.1.5. Aqueous Rechargeable Sodium Batteries
- 8.2. Nonaqueous Systems
- 8.2.1. Lithium-Ion Batteries
- 8.2.2. Rechargeable Li//S Batteries
- 8.2.3. Rechargeable Na//S Batteries
- 8.2.4. Rechargeable Li//Se Batteries
- 8.2.5. Rechargeable Mg Batteries
- 8.3. Gel Polymer Electrolyte-based Secondary Batteries
- 8.3.1. Gel Lithium-Ion Batteries
- 8.3.2. Gel-Type Electrolytes for Sodium Batteries
- 8.4. Solid Electrolyte-based Secondary Batteries
- 8.4.1. Solid Lithium-Ion Batteries
- 8.4.2. Rechargeable Solid Lithium Batteries
- 8.5. Rechargeable Metal-Air Batteries
- 8.5.1. Rechargeable Li//Air Batteries
- 8.5.2. Rechargeable Na//Air Batteries
- 8.5.3. Rechargeable Zn//Air Batteries
- 8.6. High-Temperature Systems
- 8.6.1. Sodium-Sulfur Battery
- 8.6.2. Sodium-Nickel Chloride Battery
- 8.6.3. All Liquid Metal Accumalator
- 9. Fuel Cells
- 9.1. The Oxygen Electrode
- 9.2. The Hydrogen Electrode
- 9.3. Common Features of Fuel Cells
- 9.4. Classification of Fuel Cells
- 9.4.1. Ambient Temperature Fuel Cells
- 9.4.2. Alkaline Fuel Cells
- 9.4.3. Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
- 9.4.4. Direct Alcohol Fuel Cells
- 9.4.5. Bioelectrochemical Fuel Cells
- 9.4.6. Intermediate Temperature Fuel Cells
- 9.4.7. Phosphoric Acid Fuel Cell (PAFC)
- 9.4.8. Molten Carbonate Fuel Cells (MCFC)
- 9.4.9. High Temperature Solid Oxide Fuel Cells (SOFC)
- 9.5. Applications of Fuel Cells
- 9.6. Fuel Cells in Energy Storage Systems
- 10. Flow Batteries
- 10.1. The Iron/Chromium System
- 10.2. The Iron/Vanadium System
- 10.3. The Iron/Cadmium System
- 10.4. The Bromine/Polysulfide System
- 10.5. The All-Vanadium System
- 10.6. The Vanadium/Bromine System
- 10.7. Actinide RFBs
- 10.8. All-Organic RFBs
- 10.9. Nonaqueous RFBs
- 10.10. Hybrid Systems
- 10.11. The Zinc/Cerium System
- 10.12. The Zinc/Bromine System
- 10.13. The Zinc/Organic System
- 10.14. The Cadmium/Organic System
- 10.15. The Lead/Lead Dioxide System
- 10.16. The Cadmium/Lead Dioxide System
- 10.17. The All-Copper System
- 10.18. The Zinc/Nickel System
- 10.19. The Lithium/LiFePO 4 System
- 10.20. Vanadium Solid-Salt Battery
- 10.21. Vanadium-Dioxygen System
- 10.22. Electrochemical Flow Capacitor
- 10.23. Current State and Perspectives
- 11. Supercapacitors
- 11.1. Classification of Supercapacitors
- 11.2. Electrical Double-Layer Capacitors
- 11.2.1. Electrolytes for EDLCs
- 11.2.2. Electrode Materials for EDLCs
- 11.2.3. Electrochemical Performance of EDLCs
- 11.3. Pseudocapacitors
- 11.3.1. RuO 2
- 11.3.2. MnO 2
- 11.3.3. Intrinsically Conducting Polymers
- 11.3.4. Redox Couples
- 11.3.5. Electrochemical Performance of Pseudocapacitors
- 11.4. Hybrid Capacitors
- 11.4.1. Negative Electrode Materials
- 11.4.2. Positive Electrode Materials
- 11.4.3. Electrochemical Performance of Hybrid Capacitors
- 11.5. Testing of Supercapacitors
- 11.6. Commercially Available Supercapacitors
- 11.7. Application of Supercapacitors
- 11.7.1. Uninterruptible Power Sources
- 11.7.2. Transportation
- 11.7.3. Smart Grids
- 11.7.4. Military Equipment
- 11.7.5. Other Civilian Applications
- Appendix
- Acronyms, Terms, and Definitions
- Further Reading
- Index