Electrochemical energy conversion and storage /

Saved in:
Bibliographic Details
Author / Creator:Holze, R. (Rudolf), 1954- author.
Imprint:Weinheim, Germany : Wiley-VCH, [2022]
Description:xiv, 415 pages : illustrations ; 25 cm
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12734018
Hidden Bibliographic Details
Other authors / contributors:Wu, Yuping, 1969- author.
ISBN:9783527334315
3527334319
Notes:Includes bibliographical references and index.
Table of Contents:
  • Foreword
  • Preface
  • 1. Processes and Applications of Energy Conversion and Storage
  • 2. Electrochemical Processes and Systems
  • 2.1. Parasitic Reactions
  • 2.2. Self-discharge
  • 2.3. Device Deterioration
  • 2.3.1. Aging
  • 3. Thermodynamics of Electrochemical Systems
  • 4. Kinetics of Electrochemical Energy Conversion Processes
  • 4.1. Steps of Electrode Reactions and Overpotentials
  • 4.2. Transport
  • 4.3. Charge Transfer
  • 4.4. Overpotentials
  • 4.5. Diffusion
  • 4.6. Further Overpotentials
  • 5. Electrodes and Electrolytes
  • 5.1. Recycling
  • 6. Experimental Methods
  • 6.1. Battery Tester
  • 6.2. Current-Potential Measurements
  • 6.3. Charge/Discharge Measurements
  • 6.4. Battery Charging
  • 6.5. Linear Scan and Cyclic Voltammetry
  • 6.6. Impedance Measurements
  • 6.7. Galvanostatic Intermittent Titration Technique (GITT)
  • 6.8. Potentiostatic Intermittent Titration Technique (PITT)
  • 6.9. Step Potential Electrochemical Spectroscopy (SPECS)
  • 6.10. Electrochemical Quartz Crystal Microbalance (EQCM)
  • 6.11. Non-electrochemical Methods
  • 6.11.1. Solid-state Nuclear Magnetic Resonance
  • 6.11.2. Gas Adsorption Measurements
  • 6.11.3. Microscopies
  • 6.11.4. Thermal Measurements
  • 6.11.5. Modeling
  • 7. Primary Systems
  • 7.1. Aqueous Systems
  • 7.1.1. Zinc-Carbon Battery
  • 7.1.2. Alkaline Zn//MnO 2 Battery
  • 7.1.3. Zn//HgO Battery
  • 7.1.4. Zn//AgO Battery
  • 7.1.5. Cd//AgO Batteries
  • 7.1.6. Mg//MnO 2 Batteries
  • 7.2. Nonaqueous Systems
  • 7.2.1. Primary Lithium Batteries
  • 7.2.2. Li//MnO 2
  • 7.2.3. Li//Bi 2 O 3
  • 7.2.4. Li//CuO
  • 7.2.5. Li//V 2 O 5 , Li//Ag 2 V 4 O 11 , and Li//CSVO
  • 7.2.6. Li//CuS
  • 7.2.7. Li//FeS 2
  • 7.2.8. Li//CF x Primary Battery
  • 7.2.9. Li//I 2
  • 7.2.10. Li//SO 2
  • 7.2.11. Li//SOCl 2
  • 7.2.12. Li//SO2Cl 2
  • 7.2.13. Li//Oxyhalide Primary Battery
  • 7.3. Metal-Air Systems
  • 7.3.1. Aqueous Metal-Air Primary Batteries
  • 7.3.2. Nonaqueous Metal-Air Batteries
  • 7.4. Reserve Batteries
  • 7.4.1. Seawater-activated Batteries
  • 7.4.2. High Power Activated Batteries
  • 8. Secondary Systems
  • 8.1. Aqueous Systems
  • 8.1.1. Lead-Acid
  • 8.1.2. Lead Grid
  • 8.1.3. Ni-based Secondary Batteries
  • 8.1.4. Aqueous Rechargeable Lithium Batteries
  • 8.1.5. Aqueous Rechargeable Sodium Batteries
  • 8.2. Nonaqueous Systems
  • 8.2.1. Lithium-Ion Batteries
  • 8.2.2. Rechargeable Li//S Batteries
  • 8.2.3. Rechargeable Na//S Batteries
  • 8.2.4. Rechargeable Li//Se Batteries
  • 8.2.5. Rechargeable Mg Batteries
  • 8.3. Gel Polymer Electrolyte-based Secondary Batteries
  • 8.3.1. Gel Lithium-Ion Batteries
  • 8.3.2. Gel-Type Electrolytes for Sodium Batteries
  • 8.4. Solid Electrolyte-based Secondary Batteries
  • 8.4.1. Solid Lithium-Ion Batteries
  • 8.4.2. Rechargeable Solid Lithium Batteries
  • 8.5. Rechargeable Metal-Air Batteries
  • 8.5.1. Rechargeable Li//Air Batteries
  • 8.5.2. Rechargeable Na//Air Batteries
  • 8.5.3. Rechargeable Zn//Air Batteries
  • 8.6. High-Temperature Systems
  • 8.6.1. Sodium-Sulfur Battery
  • 8.6.2. Sodium-Nickel Chloride Battery
  • 8.6.3. All Liquid Metal Accumalator
  • 9. Fuel Cells
  • 9.1. The Oxygen Electrode
  • 9.2. The Hydrogen Electrode
  • 9.3. Common Features of Fuel Cells
  • 9.4. Classification of Fuel Cells
  • 9.4.1. Ambient Temperature Fuel Cells
  • 9.4.2. Alkaline Fuel Cells
  • 9.4.3. Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
  • 9.4.4. Direct Alcohol Fuel Cells
  • 9.4.5. Bioelectrochemical Fuel Cells
  • 9.4.6. Intermediate Temperature Fuel Cells
  • 9.4.7. Phosphoric Acid Fuel Cell (PAFC)
  • 9.4.8. Molten Carbonate Fuel Cells (MCFC)
  • 9.4.9. High Temperature Solid Oxide Fuel Cells (SOFC)
  • 9.5. Applications of Fuel Cells
  • 9.6. Fuel Cells in Energy Storage Systems
  • 10. Flow Batteries
  • 10.1. The Iron/Chromium System
  • 10.2. The Iron/Vanadium System
  • 10.3. The Iron/Cadmium System
  • 10.4. The Bromine/Polysulfide System
  • 10.5. The All-Vanadium System
  • 10.6. The Vanadium/Bromine System
  • 10.7. Actinide RFBs
  • 10.8. All-Organic RFBs
  • 10.9. Nonaqueous RFBs
  • 10.10. Hybrid Systems
  • 10.11. The Zinc/Cerium System
  • 10.12. The Zinc/Bromine System
  • 10.13. The Zinc/Organic System
  • 10.14. The Cadmium/Organic System
  • 10.15. The Lead/Lead Dioxide System
  • 10.16. The Cadmium/Lead Dioxide System
  • 10.17. The All-Copper System
  • 10.18. The Zinc/Nickel System
  • 10.19. The Lithium/LiFePO 4 System
  • 10.20. Vanadium Solid-Salt Battery
  • 10.21. Vanadium-Dioxygen System
  • 10.22. Electrochemical Flow Capacitor
  • 10.23. Current State and Perspectives
  • 11. Supercapacitors
  • 11.1. Classification of Supercapacitors
  • 11.2. Electrical Double-Layer Capacitors
  • 11.2.1. Electrolytes for EDLCs
  • 11.2.2. Electrode Materials for EDLCs
  • 11.2.3. Electrochemical Performance of EDLCs
  • 11.3. Pseudocapacitors
  • 11.3.1. RuO 2
  • 11.3.2. MnO 2
  • 11.3.3. Intrinsically Conducting Polymers
  • 11.3.4. Redox Couples
  • 11.3.5. Electrochemical Performance of Pseudocapacitors
  • 11.4. Hybrid Capacitors
  • 11.4.1. Negative Electrode Materials
  • 11.4.2. Positive Electrode Materials
  • 11.4.3. Electrochemical Performance of Hybrid Capacitors
  • 11.5. Testing of Supercapacitors
  • 11.6. Commercially Available Supercapacitors
  • 11.7. Application of Supercapacitors
  • 11.7.1. Uninterruptible Power Sources
  • 11.7.2. Transportation
  • 11.7.3. Smart Grids
  • 11.7.4. Military Equipment
  • 11.7.5. Other Civilian Applications
  • Appendix
  • Acronyms, Terms, and Definitions
  • Further Reading
  • Index