Stable categories and structured ring spectra /
Saved in:
Imprint: | Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2022. ©2022 |
---|---|
Description: | xi, 426 pages : illustrations ; 25 cm. |
Language: | English |
Series: | Mathematical Sciences Research Institute publications ; 69 Mathematical Sciences Research Institute publications ; 69. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/12768494 |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | 12768494 | ||
008 | 220324t20222022enka b 001 0 eng | ||
005 | 20221117194115.5 | ||
010 | |a 2022010099 | ||
035 | |a (OCoLC)on1293767242 | ||
040 | |a DLC |b eng |e rda |c DLC |d UKMGB |d YDX |d OCLCF |d YDX |d CGU | ||
015 | |a GBC276790 |2 bnb | ||
016 | 7 | |a 020571931 |2 Uk | |
019 | |a 1293652352 | ||
020 | |a 9781009123297 |q hardcover | ||
020 | |a 1009123297 |q hardcover | ||
035 | |a (OCoLC)1293767242 |z (OCoLC)1293652352 | ||
042 | |a pcc | ||
050 | 0 | 0 | |a QA612.7 |b .S735 2022 |
082 | 0 | 0 | |a 514/.24 |2 23/eng20220517 |
084 | |a MAT038000 |2 bisacsh | ||
049 | |a CGUA | ||
245 | 0 | 0 | |a Stable categories and structured ring spectra / |c edited by Andrew J. Blumberg, Columbia University, Teena Gerhardt, Michigan State University, Michael A. Hill, University of California, Los Angeles. |
264 | 1 | |a Cambridge, United Kingdom ; |a New York, NY : |b Cambridge University Press, |c 2022. | |
264 | 4 | |c ©2022 | |
300 | |a xi, 426 pages : |b illustrations ; |c 25 cm. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a unmediated |b n |2 rdamedia | ||
338 | |a volume |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematical Sciences Research Institute publications ; |v 69 | |
504 | |a Includes bibliographical references and index. | ||
520 | |a "The modern era in homotopy theory began in the 1960s with the profound realization, first codified by Boardman in his construction of the stable category, that the category of spaces up to stable homotopy equivalence is equipped with a rich algebraic structure, formally similar to the derived category of a commutative ring R. For example, for pointed spaces the natural map from the categorical co-product to the categorical product becomes more and more connected as the pieces themselves become more and more connected"-- |c Provided by publisher. | ||
650 | 0 | |a Homotopy theory. | |
650 | 7 | |a MATHEMATICS / Topology. |2 bisacsh | |
650 | 7 | |a Homotopy theory. |2 fast |0 (OCoLC)fst00959852 | |
700 | 1 | |a Blumberg, Andrew J., |e editor. | |
700 | 1 | |a Gerhardt, Teena, |d 1980- |e editor. | |
700 | 1 | |a Hill, Michael A. |q (Michael Anthony), |e editor. | |
830 | 0 | |a Mathematical Sciences Research Institute publications ; |v 69. | |
929 | |a cat | ||
999 | f | f | |s 022ba297-577d-43b0-9d1a-cbe765a49698 |i 1c42f049-809d-4c47-888e-06ed8ecf6062 |
928 | |t Library of Congress classification |a QA612.7.S735 2022 |l Eck |c Eck-Eck |i 12905998 | ||
927 | |t Library of Congress classification |a QA612.7.S735 2022 |l Eck |c Eck-Eck |g SEPS |b 117815051 |i 10435752 |