Stable categories and structured ring spectra /

Saved in:
Bibliographic Details
Imprint:Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2022.
©2022
Description:xi, 426 pages : illustrations ; 25 cm.
Language:English
Series:Mathematical Sciences Research Institute publications ; 69
Mathematical Sciences Research Institute publications ; 69.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12768494
Hidden Bibliographic Details
Other authors / contributors:Blumberg, Andrew J., editor.
Gerhardt, Teena, 1980- editor.
Hill, Michael A. (Michael Anthony), editor.
ISBN:9781009123297
1009123297
Notes:Includes bibliographical references and index.
Summary:"The modern era in homotopy theory began in the 1960s with the profound realization, first codified by Boardman in his construction of the stable category, that the category of spaces up to stable homotopy equivalence is equipped with a rich algebraic structure, formally similar to the derived category of a commutative ring R. For example, for pointed spaces the natural map from the categorical co-product to the categorical product becomes more and more connected as the pieces themselves become more and more connected"--

MARC

LEADER 00000cam a2200000 i 4500
001 12768494
008 220324t20222022enka b 001 0 eng
005 20221117194115.5
010 |a  2022010099 
035 |a (OCoLC)on1293767242 
040 |a DLC  |b eng  |e rda  |c DLC  |d UKMGB  |d YDX  |d OCLCF  |d YDX  |d CGU 
015 |a GBC276790  |2 bnb 
016 7 |a 020571931  |2 Uk 
019 |a 1293652352 
020 |a 9781009123297  |q hardcover 
020 |a 1009123297  |q hardcover 
035 |a (OCoLC)1293767242  |z (OCoLC)1293652352 
042 |a pcc 
050 0 0 |a QA612.7  |b .S735 2022 
082 0 0 |a 514/.24  |2 23/eng20220517 
084 |a MAT038000  |2 bisacsh 
049 |a CGUA 
245 0 0 |a Stable categories and structured ring spectra /  |c edited by Andrew J. Blumberg, Columbia University, Teena Gerhardt, Michigan State University, Michael A. Hill, University of California, Los Angeles. 
264 1 |a Cambridge, United Kingdom ;  |a New York, NY :  |b Cambridge University Press,  |c 2022. 
264 4 |c ©2022 
300 |a xi, 426 pages :  |b illustrations ;  |c 25 cm. 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Mathematical Sciences Research Institute publications ;  |v 69 
504 |a Includes bibliographical references and index. 
520 |a "The modern era in homotopy theory began in the 1960s with the profound realization, first codified by Boardman in his construction of the stable category, that the category of spaces up to stable homotopy equivalence is equipped with a rich algebraic structure, formally similar to the derived category of a commutative ring R. For example, for pointed spaces the natural map from the categorical co-product to the categorical product becomes more and more connected as the pieces themselves become more and more connected"--  |c Provided by publisher. 
650 0 |a Homotopy theory. 
650 7 |a MATHEMATICS / Topology.  |2 bisacsh 
650 7 |a Homotopy theory.  |2 fast  |0 (OCoLC)fst00959852 
700 1 |a Blumberg, Andrew J.,  |e editor. 
700 1 |a Gerhardt, Teena,  |d 1980-  |e editor. 
700 1 |a Hill, Michael A.  |q (Michael Anthony),  |e editor. 
830 0 |a Mathematical Sciences Research Institute publications ;  |v 69. 
929 |a cat 
999 f f |s 022ba297-577d-43b0-9d1a-cbe765a49698  |i 1c42f049-809d-4c47-888e-06ed8ecf6062 
928 |t Library of Congress classification  |a QA612.7.S735 2022  |l Eck  |c Eck-Eck  |i 12905998 
927 |t Library of Congress classification  |a QA612.7.S735 2022  |l Eck  |c Eck-Eck  |g SEPS  |b 117815051  |i 10435752