Infinite-Dimensional Dynamical Systems. Volume 2, Attractors and Methods /

Saved in:
Bibliographic Details
Author / Creator:Guo, Boling, author.
Imprint:Berlin ; Boston : De Gruyter, [2018]
©2018
Description:1 online resource (413 pages)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12871137
Hidden Bibliographic Details
Varying Form of Title:Attractors and Methods
Other authors / contributors:Ling, Liming, author.
Ma, Yansheng, author.
Yang, Hui, author.
ISBN:3110587262
9783110587265
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (publisher's Web site, viewed 25. Jul 2018).
Summary:This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. ContentsDiscrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the first volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. ContentsDiscrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves
Other form:Print version: 9783110587081
Print version: 9783110586992
Standard no.:10.1515/9783110587265

MARC

LEADER 00000cam a2200000Mi 4500
001 12871137
006 m o d
007 cr |||||||||||
008 180725t20182018gw fobd z001 0 eng d
005 20240701200231.1
020 |a 3110587262 
020 |a 9783110587265  |q (electronic bk.) 
024 7 |a 10.1515/9783110587265  |2 doi 
035 |a (OCoLC)1046611903 
035 9 |a (OCLCCM-CC)1046611903 
040 |a DEGRU  |b eng  |e rda  |e pn  |c DEGRU  |d EBLCP  |d DEGRU  |d YDX  |d OCLCO  |d VRC  |d OCLCF  |d COO  |d U3W  |d STF  |d UAB  |d NRC  |d CUY  |d OCLCQ  |d K6U  |d N$T 
049 |a MAIN 
050 4 |a QA614.8  |b .G86 2018 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a SCI041000  |2 bisacsh 
100 1 |a Guo, Boling,  |e author.  |0 http://id.loc.gov/authorities/names/n2007077855 
245 1 0 |a Infinite-Dimensional Dynamical Systems.  |n Volume 2,  |p Attractors and Methods /  |c Boling Guo, Liming Ling, Yansheng Ma, Hui Yang. 
246 3 |a Attractors and Methods 
264 1 |a Berlin ;  |a Boston :  |b De Gruyter,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (413 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
504 |a Includes bibliographical references and index. 
505 0 0 |t Frontmatter --  |t Preface --  |t Contents --  |t 1. Discrete attractor and approximate calculation --  |t 2. Some properties of global attractor --  |t 3. Structures of small dissipative dynamical systems --  |t 4. Existence and stability of solitary waves --  |t Bibliography --  |t Index 
520 |a This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. ContentsDiscrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves 
520 |a This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the first volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. ContentsDiscrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves 
588 0 |a Online resource; title from PDF title page (publisher's Web site, viewed 25. Jul 2018). 
650 0 |a Differentiable dynamical systems.  |0 http://id.loc.gov/authorities/subjects/sh85037882 
650 0 |a Attractors (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh97005887 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Attractors (Mathematics)  |2 fast  |0 (OCoLC)fst00820911 
650 7 |a Differentiable dynamical systems.  |2 fast  |0 (OCoLC)fst00893426 
655 4 |a Electronic books. 
700 1 |a Ling, Liming,  |e author. 
700 1 |a Ma, Yansheng,  |e author.  |0 http://id.loc.gov/authorities/names/no2001036243 
700 1 |a Yang, Hui,  |e author. 
776 0 8 |i Print version:  |z 9783110587081 
776 0 8 |i Print version:  |z 9783110586992 
929 |a oclccm 
999 f f |s fdb77584-1a03-4cae-81df-e08bcd601e10  |i e56dcf05-629e-4de6-b20b-921a0eb3049d 
928 |t Library of Congress classification  |a QA614.8.G86 2018  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1883138  |z eBooks on EBSCOhost  |g ebooks  |i 13008840