Machine learning from weak supervision : an empirical risk minimization approach /
Saved in:
Author / Creator: | Sugiyama, Masashi, 1974- author. |
---|---|
Imprint: | Cambridge, Massachusetts : MIT Press, 2022. |
Description: | 1 online resource () : illustrations (some color) |
Language: | English |
Series: | Adaptive Computation and Machine Learning Adaptive computation and machine learning. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/12969440 |
MARC
LEADER | 00000nam a2200000Ii 4500 | ||
---|---|---|---|
001 | 12969440 | ||
006 | m||||||||d|||||||| | ||
007 | cr||n||||||||| | ||
008 | 220820s2022 maua ob 001 0 eng d | ||
005 | 20230405204128.2 | ||
035 | 9 | |a (GOBI)99993429634 | |
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d N$T |d UBY |d OCLCF |d OCLCQ |d UCW |d YDX | ||
019 | |a 1338643079 | ||
020 | |a 0262370565 | ||
020 | |a 9780262370561 |q (electronic book) | ||
020 | |z 9780262047074 | ||
020 | |z 0262047071 | ||
035 | |a (OCoLC)1338837149 |z (OCoLC)1338643079 | ||
050 | 4 | |a Q325.75 |b .S84 2022 | |
082 | 0 | 4 | |a 006.3/1 |
100 | 1 | |a Sugiyama, Masashi, |d 1974- |e author. | |
245 | 1 | 0 | |a Machine learning from weak supervision : |b an empirical risk minimization approach / |c Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakayi and Gang Niu. |
264 | 1 | |a Cambridge, Massachusetts : |b MIT Press, |c 2022. | |
300 | |a 1 online resource () : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Adaptive Computation and Machine Learning | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a I. Machine Learning from Weak Supervision -- II. Weakly Supervised Learning for Binary Classification -- III. Weakly Supervised Learning for Multi-Class Classification -- IV. Advanced Topics and Perspectives | |
650 | 0 | |a Supervised learning (Machine learning) | |
650 | 7 | |a Supervised learning (Machine learning) |2 fast |0 (OCoLC)fst01139041 | |
700 | 1 | |a Bao, Han, |e author. | |
700 | 1 | |a Ishida, Takashi, |e author. | |
700 | 1 | |a Lu, Nan, |e author. | |
700 | 1 | |a Sakai, Tomoya, |e author. | |
700 | 1 | |a Niu, Gang, |e author. | |
776 | 0 | 8 | |i Print version: |a Sugiyama, Masashi |t Machine Learning from Weak Supervision |d Cambridge : MIT Press,c2022 |z 9780262047074 |
830 | 0 | |a Adaptive computation and machine learning. | |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/uchicago/detail.action?docID=7068652 |y ProQuest Ebook Central |x 1 |z Licensed for 1 user at a time |
901 | |a YBPebook | ||
929 | |a eresource | ||
999 | f | f | |s e3fa35b4-c002-455f-a2df-e3a96237354d |i 40e7cd37-39d5-4a40-806b-b0d14b40d60b |
928 | |t Library of Congress classification |a Q325.75.S84 2022 |l Online |c UC-FullText |n Licensed for 1 user at a time |u https://ebookcentral.proquest.com/lib/uchicago/detail.action?docID=7068652 |z ProQuest Ebook Central |g ebooks |e MACP |i 13107323 |