Machine learning from weak supervision : an empirical risk minimization approach /

Saved in:
Bibliographic Details
Author / Creator:Sugiyama, Masashi, 1974- author.
Imprint:Cambridge, Massachusetts : MIT Press, 2022.
Description:1 online resource () : illustrations (some color)
Language:English
Series:Adaptive Computation and Machine Learning
Adaptive computation and machine learning.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12969440
Hidden Bibliographic Details
Other authors / contributors:Bao, Han, author.
Ishida, Takashi, author.
Lu, Nan, author.
Sakai, Tomoya, author.
Niu, Gang, author.
ISBN:0262370565
9780262370561
9780262047074
0262047071
Notes:Includes bibliographical references and index.
Other form:Print version: Sugiyama, Masashi Machine Learning from Weak Supervision Cambridge : MIT Press,c2022 9780262047074

MARC

LEADER 00000nam a2200000Ii 4500
001 12969440
006 m||||||||d||||||||
007 cr||n|||||||||
008 220820s2022 maua ob 001 0 eng d
005 20230405204128.2
035 9 |a (GOBI)99993429634 
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d N$T  |d UBY  |d OCLCF  |d OCLCQ  |d UCW  |d YDX 
019 |a 1338643079 
020 |a 0262370565 
020 |a 9780262370561  |q (electronic book) 
020 |z 9780262047074 
020 |z 0262047071 
035 |a (OCoLC)1338837149  |z (OCoLC)1338643079 
050 4 |a Q325.75  |b .S84 2022 
082 0 4 |a 006.3/1 
100 1 |a Sugiyama, Masashi,  |d 1974-  |e author. 
245 1 0 |a Machine learning from weak supervision :  |b an empirical risk minimization approach /  |c Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakayi and Gang Niu. 
264 1 |a Cambridge, Massachusetts :  |b MIT Press,  |c 2022. 
300 |a 1 online resource () :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Adaptive Computation and Machine Learning 
504 |a Includes bibliographical references and index. 
505 0 |a I. Machine Learning from Weak Supervision -- II. Weakly Supervised Learning for Binary Classification -- III. Weakly Supervised Learning for Multi-Class Classification -- IV. Advanced Topics and Perspectives 
650 0 |a Supervised learning (Machine learning) 
650 7 |a Supervised learning (Machine learning)  |2 fast  |0 (OCoLC)fst01139041 
700 1 |a Bao, Han,  |e author. 
700 1 |a Ishida, Takashi,  |e author. 
700 1 |a Lu, Nan,  |e author. 
700 1 |a Sakai, Tomoya,  |e author. 
700 1 |a Niu, Gang,  |e author. 
776 0 8 |i Print version:  |a Sugiyama, Masashi  |t Machine Learning from Weak Supervision  |d Cambridge : MIT Press,c2022  |z 9780262047074 
830 0 |a Adaptive computation and machine learning. 
856 4 0 |u https://ebookcentral.proquest.com/lib/uchicago/detail.action?docID=7068652  |y ProQuest Ebook Central  |x 1  |z Licensed for 1 user at a time 
901 |a YBPebook 
929 |a eresource 
999 f f |s e3fa35b4-c002-455f-a2df-e3a96237354d  |i 40e7cd37-39d5-4a40-806b-b0d14b40d60b 
928 |t Library of Congress classification  |a Q325.75.S84 2022  |l Online  |c UC-FullText  |n Licensed for 1 user at a time  |u https://ebookcentral.proquest.com/lib/uchicago/detail.action?docID=7068652  |z ProQuest Ebook Central  |g ebooks  |e MACP  |i 13107323