Probabilistic approaches to linguistic theory /

Saved in:
Bibliographic Details
Imprint:Stanford, California : Center for the Study of Language and Information, [2022]
Description:x, 453 pages : illustrations ; 23 cm
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13012674
Hidden Bibliographic Details
Other authors / contributors:Bernardy, Jean-Philippe, editor.
Blanck, Rasmus, editor.
Chatzikyriakidis, Stergios, editor.
Lappin, Shalom, editor.
Maskharashvili, Aleksandre, editor.
ISBN:9781684000791
1684000793
9781684000807
Notes:Includes bibliographical references.
Summary:"During the last two decades, computational linguists, in concert with other researchers in AI, have turned to machine learning and statistical techniques to capture features of natural language and aspects of the learning process that are not easily accommodated in classical algebraic frameworks. These developments are producing a revolution in linguistics in which traditional symbolic systems are giving way to probabilistic and deep learning approaches. This collection features articles that provide background to these approaches, and their application in syntax, semantics, pragmatics, morphology, psycholinguistics, neurolinguistics, and dialogue modeling. Each chapter provides a self-contained introduction to the topic that it covers, making this volume accessible to graduate students and researchers in linguistics, NLP, AI, and cognitive science"--
Other form:Online version : Probabilistic approaches to linguistic theory Stanford : Center for the Study of Language and Information, 2022 9781684000807

MARC

LEADER 00000cam a2200000 i 4500
001 13012674
008 220712s2022 caua b 000 0 eng
005 20230428185950.6
010 |a  2022033333 
035 9 |a (GOBI)99993578292 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d UKMGB  |d BDX  |d OCLCQ  |d YDX 
020 |a 9781684000791  |q paperback 
020 |a 1684000793  |q paperback 
020 |z 9781684000807  |q electronic book 
035 |a (OCoLC)1336891902 
042 |a pcc 
050 0 0 |a P98  |b .P745 2022 
082 0 0 |a 410.285  |2 23/eng/20220720 
245 0 0 |a Probabilistic approaches to linguistic theory /  |c edited by Jean-Philippe Bernardy, Rasmus Blanck, Stergios Chatzikyriakidis, Shalom Lappin, Aleksandre Maskharashvili. 
264 1 |a Stanford, California :  |b Center for the Study of Language and Information,  |c [2022] 
300 |a x, 453 pages :  |b illustrations ;  |c 23 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references. 
505 0 |a Introduction -- 1. Computational Morphology / Christo Kirov and Richard Sproat -- 2. Something Old, Something New : Grammar-based CCG Parsing with Transformer Models / Stephen Clark -- 3. Probabilistic Lexical Semantics: From Gaussian Embeddings to Bernoulli Fields / Guy Emerson -- 4. The origins of vagueness / Peter Sutton -- 5. Bayesian Inference Semantics for Natural Language / Jean-Philippe Bernardy, Rasmus Blanck, Stergios Chatzikyriakidis, Shalom Lappin and Aleksandre Maskharashvili -- 6. Probabilistic pragmatics : a dialogical perspective / Bill Noble, Vladislav Maraev, and Ellen Breitholtz -- 7. Neuro-computation for language processing / Vidya Somashekarappa -- 8. Learning Language Games Probabilistically : From Crying to Compositionality / Robin Cooper, Jonathan Ginzburg and Staffan Larsson -- 9. Distributional Semantics for Situated Spatial Language? Functional, Geometric and Perceptual Perspectives / John D. Kelleher and Simon Dobnik -- 10. Action coordination and learning in dialogue / Arash Eshghi, Christine Howes, and Eleni Gregoromichelaki -- 11. Reanalysis, probability, and the faculty of language / Asad B. Sayeed -- Contributors -- Glossary. 
520 |a "During the last two decades, computational linguists, in concert with other researchers in AI, have turned to machine learning and statistical techniques to capture features of natural language and aspects of the learning process that are not easily accommodated in classical algebraic frameworks. These developments are producing a revolution in linguistics in which traditional symbolic systems are giving way to probabilistic and deep learning approaches. This collection features articles that provide background to these approaches, and their application in syntax, semantics, pragmatics, morphology, psycholinguistics, neurolinguistics, and dialogue modeling. Each chapter provides a self-contained introduction to the topic that it covers, making this volume accessible to graduate students and researchers in linguistics, NLP, AI, and cognitive science"--  |c Provided by publisher. 
650 0 |a Computational linguistics. 
650 0 |a Natural language processing (Computer science) 
650 0 |a Deep learning (Machine learning) 
650 7 |a Computational linguistics.  |2 fast  |0 (OCoLC)fst00871998 
650 7 |a Deep learning (Machine learning)  |2 fast  |0 (OCoLC)fst02032663 
650 7 |a Natural language processing (Computer science)  |2 fast  |0 (OCoLC)fst01034365 
700 1 |a Bernardy, Jean-Philippe,  |e editor. 
700 1 |a Blanck, Rasmus,  |e editor. 
700 1 |a Chatzikyriakidis, Stergios,  |e editor. 
700 1 |a Lappin, Shalom,  |e editor. 
700 1 |a Maskharashvili, Aleksandre,  |e editor. 
776 0 8 |i Online version :  |t Probabilistic approaches to linguistic theory  |d Stanford : Center for the Study of Language and Information, 2022  |z 9781684000807  |w (DLC) 2022033334 
929 |a cat 
999 f f |s 67b87e8b-b4b6-4634-9696-b9f86ebb4f57  |i 25090b4f-9a66-447a-80a8-b71711f67465 
928 |t Library of Congress classification  |a P98.P745 2022  |l JRL  |c JRL-Gen  |i 13150532 
927 |t Library of Congress classification  |a P98.P745 2022  |l JRL  |c JRL-Gen  |e MARO  |b 118325203  |i 10478801