Generalized frequency distributions for environmental and water engineering /

Saved in:
Bibliographic Details
Author / Creator:Singh, V. P. (Vijay P.), author.
Imprint:Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2022.
©2022
Description:1 online resource ( xvi, 315 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13118565
Hidden Bibliographic Details
Other authors / contributors:Zhang, Lan, 1973- author.
ISBN:9781009025317
1009025317
9781009036009
1009036009
9781316516843
Notes:Includes bibliographical references and index.
Description based on online resource; title from digital title page (viewed on April 27, 2022).
Other form:Print version: Singh, V. P. Generalized frequency distributions for environmental and water engineering Cambridge, United Kingdom ; New York, NY : Cambridge University Press, [2022] 9781316516843
Table of Contents:
  • Cover
  • Half-title page
  • Title page
  • Copyright information page
  • Dedication
  • Contents
  • Preface
  • Acknowledgments
  • 1 Introduction
  • 1.1 Introduction
  • 1.2 Generalized Distributions
  • 1.3 Distribution Characteristics
  • 1.4 Characterization through Hazard Function
  • 1.4.1 Gamma Distribution
  • 1.4.2 Weibull Distribution
  • 1.4.3 Modified Extreme Value Distribution
  • 1.4.4 Pareto Distribution
  • 1.4.5 Lognormal Distribution
  • 1.4.6 Log-Logistic Distribution
  • 1.5 Methods of Parameter Estimation
  • 1.5.1 Regular Entropy Method
  • 1.5.2 Parameter Space Expansion Method
  • 1.5.3 MOM
  • 1.5.4 Method of PWMs
  • 1.5.5 Method of L-Moments
  • 1.5.6 MLE Method
  • 1.5.7 Method of Cumulative Moments
  • 1.5.8 Least Squares Method
  • 1.6 Selection of a Distribution
  • 1.7 Goodness-of-Fit Measures
  • References
  • 2 Burr-Singh-Maddala Distribution
  • 2.1 Introduction
  • 2.2 Characteristics of BSM Distribution
  • 2.3 Characterization through Hazard Function
  • 2.4 Derivation of BSM Distribution
  • 2.4.1 Singh-Maddala Method
  • 2.4.2 Another Singh-Maddala Method
  • 2.4.3 Differential Equation Method
  • 2.4.4 Entropy Method
  • 2.5 Parameter Estimation
  • 2.5.1 Regular Entropy Method
  • 2.5.2 Parameter Space Expansion Method
  • 2.5.2.1 Derivation of Entropy Function
  • 2.5.2.2 Relation between Parameters and Constraints
  • 2.5.3 Method of Moments
  • 2.5.4 Maximum Likelihood Estimation Method
  • 2.5.5 Probability Weighted Moments Method
  • 2.5.6 Method of L-Moments
  • 2.5.7 Method of Cumulative Moments
  • 2.6 Application
  • 2.6.1 Synthetic Data
  • 2.6.2 Peak Flow
  • 2.6.3 Maximum Daily Precipitation
  • 2.6.4 Drought (Total Flow Deficit)
  • 2.7 Conclusion
  • References
  • 3 Halphen Type A Distribution
  • 3.1 Introduction
  • 3.2 Hal-A Distribution and Its Characteristics
  • 3.3 Differential Equation for Derivation of Hal-A Distribution
  • 3.4 Derivation of Hal-A Distribution by Entropy Theory
  • 3.4.1 Specification of Constraints
  • 3.4.2 Entropy Maximizing
  • 3.4.3 Relation between Lagrange Multipliers and Distribution Parameters
  • 3.5 Parameter Estimation
  • 3.5.1 Regular Entropy Method
  • 3.5.1.1 Relations between Lagrange Multipliers and Constraints
  • 3.5.2 Parameter Space Expansion Method
  • 3.5.3 MOM
  • 3.5.4 MLE Method
  • 3.6 Application
  • 3.6.1 Simulating Hal-A Distributed Random Variable with Fixed Parameters
  • 3.6.2 Parameter Estimation Using Simulated Random Variables
  • 3.6.3 Peak Flow
  • 3.6.4 Total Flow Deficit
  • 3.6.5 Maximum Daily Precipitation
  • 3.7 Conclusion
  • References
  • 4 Halphen Type B Distribution
  • 4.1 Introduction
  • 4.2 Hal-B Distribution and Its Characteristics
  • 4.3 Differential Equation for Hal-B Distribution and Distribution Characteristics
  • 4.4 Derivation of Hal-B Distribution by Entropy Theory
  • 4.4.1 Specification of Constraints
  • 4.4.2 Entropy Maximizing